

Limnologisches Untersuchungsprogramm Sengbachtalsperre

Bericht für das Jahr 2013

Auftragsdatum: 23.07.2013 Freiburg, im August 2014 Limnologie-Büro Hoehn

Unabhängiges Büro für Gewässergutachten

Glümerstr.2a D-79102 Freiburg

Tel.: 0761/706485 Fax: 0761/706496

e-mail: lbh@gmx.de

Internet: www.gewaesserfragen.de

Bearbeitung:

Phytoplankton: Dipl. Biol. Annette Tworeck, Dipl. Biol. Lydia Oschwald

Zooplankton: Dipl. Geogr. Erika Sewing, Annette Tworeck

Trophieklassifikation: Annette Tworeck, Dipl. Biol. Ursula Riedmüller

Trophiebewertung: Dipl. Biol. Ursula Riedmüller

Grafikprogrammierung: Dr. Jürgen Clasen †, Annette Tworeck

Endredaktion: Dipl. Biol. Eberhard Hoehn, Annette Tworeck, Ursula Riedmüller

Titelfoto: Bodo Primus

Inhaltsverzeichnis

	O		is	
Tab∈ ₁				
1 2			führungnd Auswertungsmethoden sowie Bewertungsgrundlagen	
_	2.1		nahme, Messmethoden und Herkunft der Daten	
	2.2		skopische Bearbeitung und Biomasseberechnung des Phytoplanktons	
	2.3		skopische Bearbeitung und Biomasseberechnung von <i>Planktothrix</i> im Labor	
				5
	2.4	Aufbe	reitung und Auswertung der pelagischen Diatomeenproben	5
	2.5	Bearbe	eitung der Zooplanktonproben und Biomasseberechnung	6
	2.6		llagen der Trophieklassifikation mit dem Trophieindex nach LAWA und der tung mit Phytoplankton	6
3	Ergebni	isse		8
	3.1	Sonde	nparameter	8
	3.	1.1	Temperatur	8
	3.	1.2	pH-Wert	9
	3.	1.3	Leitfähigkeit	10
	3.	1.4	Sauerstoff	11
	3.2	Wasse	erchemie	13
	3.	2.1	Phosphor	13
	3.	2.2	Stickstoff	14
	3.	2.3	Silicium	16
	3.3	Phyto	planktonplankton	17
	3.	3.1	Artenliste und Biovolumina	17
	3.	3.2	Phytoplanktonbiomassen und Artensukzession	21
	3.4	Zoopla	ankton	26
	3.	4.1	Rolle des Zooplanktons im Süßwasser	26
	3.	4.2	Artenliste und Biovolumina der Rotatorien und Crustaceen	27
	3.	4.3	Biomasse und Sukzession der Arten und Gruppen der Rotatorien	30
	3.	4.4	Biomasse und Sukzession der Arten und Gruppen der Crustaceen	32
	3.	4.5	Nahrungsangebot für herbivore Filtrierer, Biofiltration und Fischfraßdruck	34
4	Auswer	tung un	nd Diskussion	37
	4.1	Troph Karabi	ieklassifizierung anhand des Rotatorien- und Crustaceenplanktons nach in	37

	4.2		eklassifizierung onbiomassen		•				
	4.3	Bewert	ung anhand des	s Phytoplar	nktons mit dem	Phyto-See-Ind	dex		41
	4.4	Bewert	ung auf Basis de	er Hintergr	und- und Orient	ierungswerte	gemäß E	G-WRRL	42
	4.5	Anwen	dung der Phytol	Loss-Indice	es auf die Zoo- ι	ınd Phytoplar	nkton-Bef	funde	43
	4.	.5.1	Einführung, M	1ethoden u	nd Grundlagen	der Auswertu	ng		43
	4.	.5.2	Ergebnisse de	er PhytoLos	s-Auswertung				44
	4.	.5.3		`	g der PhytoLoss g				
5	Zusamr	menfassu	ung und Schlusst	folgerunge	en				48
6	Literatu	ır							52

Abbildungsverzeichnis

Abb	. 1: <i>Planktothrix rubescens</i> (Cyanobacteria) an der Wasseroberfläche der Sengbachtalsperre vor der Staumauer (06.03.2013, Foto Bodo Primus)	1
Abb	. 2: Isoplethen der Temperatur, Sengbachtalsperre im Jahr 2013	8
Abb	. 3: Isoplethen des pH-Werts, Sengbachtalsperre im Jahr 2013	9
Abb	. 4: Isoplethen der Leitfähigkeit, Sengbachtalsperre im Jahr 2013	10
Abb	. 5: Isoplethen des gelösten Sauerstoffs, Sengbachtalsperre im Jahr 2013	11
Abb	. 6: Isoplethen der Sauerstoffsättigung, Sengbachtalsperre im Jahr 2013	12
Abb	. 7: Gesamt-Phosphat-P-Konzentrationen [µg/L] in der Sengbachtalsperre im Jahr 2013	13
Abb	. 8: Nitrat-N-Konzentrationen [µg/L] in der Sengbachtalsperre im Jahr 2013	14
Abb	. 9: Nitrit-N-Konzentrationen [μg/L] in der Sengbachtalsperre im Jahr 2013	15
Abb	. 10: Ammonium-N-Konzentrationen [µg/L] in der Sengbachtalsperre im Jahr 2013	15
Abb	. 11: Silikat-Silicium-Konzentrationen [mg/L] in der Sengbachtalsperre im Jahr 2013	16
Abb	. 12: Fäden von <i>Planktothrix rubescens</i> (Cyanobacteria) im Februar 2013 in der Sengbachtalsperre	21
Abb	. 13: Biomassen der Algengruppen [µg/L] und Chlorophyll-a-Konzentrationen in der Sengbachtalsperre im Jahr 2013	22
Abb	. 14: Relative Anteile der Algengruppen an der Gesamtbiomasse im Jahr 2013	23
Abb	. 15: Artensukzession des Phytoplanktons in der Sengbachtalsperre im Jahr 2013. Dargestellt ist die Biomasseentwicklung [% der Gesamtbiomasse] derjenigen Algenspezies, die zeitweise mehr als 5 % der Gesamtbiomasse erreichten	24
Abb	. 16: Isoplethen des Biovolumens [mm³/L] von <i>Planktothrix rubescens</i> in der Sengbachtalsperre im Jahr 2013 (Daten Labor SWT)	25
Abb	. 17: Relative Zusammensetzung des Zooplanktons im Jahr 2013 (in Klammern die Biomasse in µg/L Frischgewicht als zeitgewichtetes Jahresmittel)	27
Abb	. 18: Zusammensetzung des Rotatorienplanktons (Frischgewicht) im Jahr 2013	31
Abb	. 19: Relative Zusammensetzung der Rotatorienbiomasse im Jahr 2013	31
Abb	. 20: Zusammensetzung des Crustaceenplanktons (Frischgewicht) im Jahr 2013	33
Abb	. 21: Relative Zusammensetzung der Crustaceenbiomasse im Jahr 2013	33
Abb	. 22: Größenzusammensetzung des Zooplanktons (Frischgewicht) im Jahr 2013	34
Abb	. 23: Biomasse des Phytoplanktons in den Kategorien fressbar (< 40 µm) und nichtfressbar (u. a. > 40 µm Länge, fädige Formen oder kompakte Kolonien) für das herbivore Zooplankton im Jahr 2013	35
Abb	. 24: Biomasse des Phytoplanktons (PP) in Fressbarkeitskategorien (nach FQI) sowie des herbivoren Zooplanktons (ZP), Anteil der Cladoceren (alle Größen), FQI des PP sowie das vom ZP ausgehende tägliche Grazing-Potenzial (nach MGI) an den Terminen im Jahr 2013 in der Sengbachtalsperre	46

Tabellenverzeichnis

Tabelle 1: Untersuchungstermine (Sondenparameter, Hydrochemie, Planktonbeprobung) in der Sengbachtalsperre im Jahr 2013	3
Tabelle 2: Zellformen und zugehörige Volumenberechnungsformeln zur Bestimmung des Phytoplanktonbiovolumens.	4
Tabelle 3: Trophie-Klassifikation: Index-Wertebereiche, trophische Zuordnung und Abkürzungen (mesotropher Status wird abweichend von LAWA (1999) in zwei Klassen aufgesplittet)	6
Tabelle 4: Indexwerte von PSI und Einzelmetrics, Zustandsklassen der ökologischen Qualität (ÖQ) sowie Farbsignatur	7
Tabelle 5: Typologische Einstufung der Sengbachtalsperre als Mittelgebirgs-Seetyp gemäß LAWA sowie Phytoplankton-Seetyp gemäß VTQ-Kriterium (RIEDMÜLLER & HOEHN 2011), die jeweilige "sehr gut/gut-Grenze" (H/G = high/good) und trophischer Referenzwert als Ankerpunkt der Bewertung	7
Tabelle 6: Artenliste des Phytoplanktons der Sengbachtalsperre und deren Mediane der Längen, Breiten und Biovolumina (Vol.) [µm bzw. µm³]. Unter "F" findet sich der zugeordnete geometrische Körper zur Berechnung des Biovolumens (Hoehn <i>et al.</i> 1998, Tabelle 2). ID und DV-Nummern (= DV-Code der Bundestaxaliste) sind der Harmonisierten Taxaliste aus MISCHKE & KUSBER 2009 und der Taxaliste der Gewässerorganismen Deutschlands (Stand 2011) entnommen	.17
Tabelle 7: Artenliste der Rotatorien und Crustaceen in der Sengbachtalsperre im Jahr 2013 und deren berechnete Mediane der Längen, Breiten und Biovolumina [µm bzw. µm³]. Unter Form findet sich die der jeweiligen Art zugeordnete Zellform zur Berechnung des Biovolumens (HOEHN <i>et al.</i> 1998, Tabelle 2)	.28
Tabelle 8: Gruppenbildung bei Talsperren (TS) (Kriterien: Mixistyp und Gesamtphosphor-Jahresmittel) und Wertebereiche des CSI nach GROßE (2008) zur Einschätzung des Ausmaßes der Biofiltration des Phytoplanktons durch das Zooplankton in den Klassen gering, mittel und groß sowie Rückschluss auf den Fischfraßdruck. Die Sengbachtalsperre liegt zwischen Kategorie 2 und 3	.36
Tabelle 9: Biomasse der Crustaceen (gesamt) und Cladoceren (große Individuen) sowie der CSI-Wert zur Abschätzung der Biofiltration und des Fischfraßdrucks nach GROßE (2008)	.36
Tabelle 10: Indikatorgruppen nach Karabin (1985)	37
Tabelle 11: Trophieklassifizierung der Sengbachtalsperre für das Jahr 2013 anhand der Sommersituation in der Zooplanktonbiozönose (Crustaceen und Rotatorien) nach Karabin (1985) (verwendeter Termin: 18.07.2013)	.38
Tabelle 12: Trophieklassifikation mit dem Trophie-Index nach LAWA (TI) und allen Teil-Indices sowie mit dem Phytoplanktonbiovolumen-Index (PP-BV-Index) (RIEDMÜLLER et al. 2013c) und dem auf Indikatorarten basierenden Phytoplankton-Taxa-Seen-Index (PTSI) (RIEDMÜLLER & HOEHN 2011) für das Jahr 2013. (Seegruppe: geschichtete Talsperren, geschTS)	.39
Tabelle 13: Ableitung der Trophieklasse der Jahrgänge auf Basis des Zooplanktonbiovolumens im Saisonmittel mit den (Index-Entwurf nach RIEDMÜLLER & HOEHN 2008)	.39
Tabelle 14: Bewertung des ökologischen Zustands der Sengbachtalsperre (als Phytoplankton-Seetyp 8) im Jahr 2013 anhand von Phytoplanktonbefunden und Trophiekenngrößen mit dem EG-WRRL-konformen Phyto-See-Index-Verfahren (PSI) (Version 5.1 vom 02.01.2014, MISCHKE <i>et al.</i> 2014)	.41
Tabelle 15: Übergangsbereiche (Saisonmittelwerte) des "guten" ökologischen Zustands zur "sehr guten" und zur "mäßigen" Zustandsklasse für die Parameter Gesamtphosphor und Secchi-Sichttiefe bezogen auf den Phytoplankton-Seetyp 8 der Sengbachtalsperre. Auszug aus RIEDMÜLLER <i>et al.</i> (2013b)	.42
Tabelle 16: Unterstützende Bewertung der Sengbachtalsperre anhand der Hintergrund- und Orientierungswerte für die trophischen Parameter Gesamtphosphor und Sichttiefe (Secchi) (RIEDMÜLLER <i>et al.</i> 2013b) auf Basis des Jahrgangs 2013. GesP = Gesamtphosphor	.42

Tabelle 17: Klassifizierungsschema der Grazing-Indices (MGI und CGI) in Bezug auf das fressbare Phytoplankton mit Hilfe von Grazing-Effektstärke-Klassen (GES) nach Deneke et al. (2013)	44
Tabelle 18: Kenngrößen des PhytoLoss-Moduls für die Probenahmetermine des Jahres 2013 in der Sengbachtalsperre nach einem vorläufigen Excel-Tool von DENEKE (2013). Datenbasis Zoo- und Phytoplanktonbefunde je Probe.	45
Tabelle 19: Trophiestatus mit GesP- und BM-Index (Mittel Chl a- und PP-BV-Index), Grazing-Effektstärke (GES) des ZP auf das PP, Vorkommen von Klarwasserstadium und dominanten Taxa sowie Aussagen zur ZP-Struktur und daraus abschätzbarem Fischbestand (Übertrag aus Kap. 3.4.5). 2013	46

1 Anlass und Einführung

Im Januar 2013 kam es in der Sengbachtalsperre zu einer Massenentwicklung von *Planktothrix rubescens*, welche als rötlich gefärbte Aufrahmung an der Wasseroberfläche besonders gut sichtbar war (s. Abb. 1). Diese fädige Cyanobakterie ist bekannt für die Bildung von Microcystin, dessen Giftwirkung bei der Aufnahme in höheren Dosen zu Lebererkrankungen und Leberkrebs führen kann.

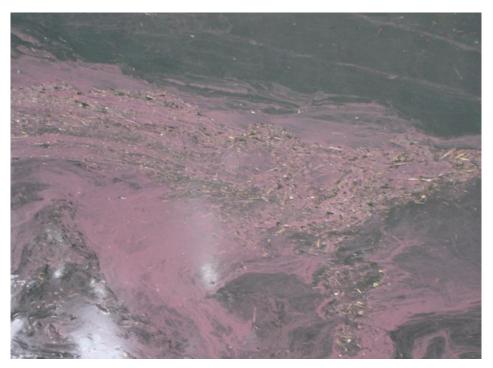


Abb. 1: *Planktothrix rubescens* (Cyanobacteria) an der Wasseroberfläche der Sengbachtalsperre vor der Staumauer (06.03.2013, Foto Bodo Primus).

Da über die aktuellen Microcystinkonzentrationen zu diesem Zeitpunkt keine Kenntnisse vorlagen wurde das Wasserwerk Glüder vom 25. bis 30.01.2013 vorsorglich vom Versorgungsnetz genommen. Daran schloss sich ein umfangreiches Untersuchungsprogramm in der Talsperre und im Wasserwerk an, um die Entwicklung des Toxinbildners und dessen ökologisches Umfeld zu erforschen. Die Ergebnisse des limnologischen Untersuchungsprogrammes in der Talsperre sind im Auftrag der Stadtwerke Solingen (SWS) im vorliegenden Bericht dargestellt. Zusammenhänge zwischen der Trophielage und dem planktischen Nahrungsnetz werden aufgezeigt.

2 Feld-, Labor- und Auswertungsmethoden sowie Bewertungsgrundlagen

2.1 Probenahme, Messmethoden und Herkunft der Daten

Probenahme

Die Probenahmen wurden vom Labor und vom Talsperrenmeister der SWS (Stadtwerke Solingen) vom Boot aus durchgeführt. Sie erfolgten an der tiefsten Stelle des Stausees in der Nähe des Grundablasses.

Physikalisch-chemische Parameter

Die Messung von Temperatur, Sauerstoffgehalt, Leitfähigkeit und pH-Wert erfolgte direkt aus dem FRIEDINGER-Wasserschöpfer. Ab 18.07.2013 konnten diese Parameter zugleich mit einer Multisonde (Hydrolab) gemessen werden. Aus Gründen der Vergleichbarkeit mit den Daten des ersten Halbjahres werden jedoch nur einheitlich die Daten aus dem Wasserschöpfer dargestellt, da diese durchgehend vorhanden waren. Die Sichttiefe wurde mit einer Scheibe nach ISO 7027 gemessen.

Die hier betrachteten chemischen Untersuchungsergebnisse betreffen die im Tiefenprofil gemessenen Trophieparameter Gesamt-P (ICP-MS), NO₃-N (IC), NO₂-N (photometr.), NH₄-N (photometr.) und SiO₂-Si (ICP-MS), sowie Chlorophyll-a (DIN 38412/L16 ab 27.06.2013).

Planktonprobenahme

Für die Untersuchung des Phytoplanktons wurde eine Summenprobe aus der euphotischen Zone (ca. 2,5fache Sichttiefe) entnommen. Die Phytoplanktonproben wurden mit Lugol'scher Lösung fixiert.

Für die Erfassung der Zooplanktonbiomasse (Crustaceen) erfolgte ein Netzzug über die gesamte Tiefe mit einem Flowmeter-Crustaceennetz (Maschenweite 150 µm, Öffnungsdurchmesser 35 cm) sowie für Rotatorien und kleine Nauplien eine Summenprobe (6-15 L) aus allen Proben des Tiefenprofils, die mittels Netzgazebecher (Maschenweite 55 µm) angereichert wurde. Beide Zooplanktonproben wurden mit Zuckerformalin (4%) fixiert. Die Bearbeitung der Planktonproben erfolgte bei LBH.

Im Verlauf der Untersuchungen stellte sich heraus, dass das Flowmeter (Fa. Hydrobios) nicht korrekt arbeitete und Minderbefunde anzeigte. Der Fehler konnte erst mit Ende des Jahresgangs sicher diagnostiziert werden. Behelfsweise wurden daher 90% der theoretischen Wassersäule als Primärvolumen angenommen. Dieser Wert wurde aus Daten abgeleitet, die in einem Baggersee mit ähnlichem *Planktothrix*-Vorkommen in Freiburg erhoben wurden (LBH & Limnofisch 2003).

Im Labor der SWS wurden anhand gesonderter Proben mikroskopische Untersuchungen durchgeführt, welche die *Planktothrix*-Dichten im Tiefenprofil ermitteln.

Probentermine

In Tabelle 1 sind die Beprobungstermine in der Sengbachtalsperre zusammengestellt.

Tabelle 1: Untersuchungstermine (Sondenparameter, Hydrochemie, Planktonbeprobung) in der Sengbachtalsperre im Jahr 2013. X = vollständiges Untersuchungsprogramm.

Datum	Untersuchungsprogramm Sengbachtalsperre
29.01.2013	ohne O ₂ -Daten, Phyto- und Zooplankton, ohne Chl a
06.02.2013	ohne O ₂ -Daten , ohne Phyto- und Zooplankton, ohne ChI a
13.02.2013	ohne O₂-Daten, ohne Zooplankton, ohne Chl a
20.02.2013	ohne Phyto- und Zooplankton, ohne Chl a
27.02.2013	nur <i>Planktothrix</i> und Gesamtphosphat, ohne Chl a
27.03.2013	ohne Phyto- und Zooplankton, ohne Chl a
26.04.2013	X, ohne Chl a
06.05.2013	ohne Phyto- und Zooplankton, ohne Chl a
28.05.2013	X, ohne Chl a
27.06.2013	X (<i>Planktothrix</i> -Profil vom 18.06.2013)
18.07.2013	X
27.08.2013	X
24.09.2013	X
23.10.2013	X
19.11.2013	X
09.12.2013	X

2.2 Mikroskopische Bearbeitung und Biomasseberechnung des Phytoplanktons

Für die Bearbeitung der Proben wird jeweils ein Teilvolumen (10 ml) aus dem gesamten Probenvolumen in einer Röhrenverbundkammer (HYDROBIOS) über 24 h absedimentiert. Die mikroskopische Auszählung des Phytoplanktons erfolgt nach UTERMÖHL (1958) im Umkehrmikroskop bei 100 bzw. 125facher und 400 bzw. 500facher Vergrößerung (vgl. HOEHN *et al.* 1998). Die Taxonomie wurde hauptsächlich nach HUBER-PESTALOZZI (1938-83) und ETTL *et al.* (1978-1991) vorgenommen. Die Bestimmungstiefe richtet sich grundsätzlich nach der harmonisierten Taxaliste von MISCHKE & KUSBER (2009). Das darin u. a. enthaltene Mindestbestimmbarkeitsniveau hinsichtlich WRRL-Bewertung wird bei der Bearbeitung in der Regel mindestens eingehalten, oft erfolgt aber auch eine tiefergehende Determination.

Die Berechnung der Biomasse des Phytoplanktons kann über die Bestimmung der Körpervolumina erfolgen. Für jede Phytoplanktonart wird zunächst ein mittleres Zellvolumen festgelegt. Um dieses auszurechnen, werden Längen- und Breitenmessungen mit einer digitalen Bildverarbeitungen (Intec EasyMeasure 1.7) oder mit Hilfe einer kalibrierten Okularskalierung vorgenommen. Dabei werden aus allen untersuchten Proben einzelne Individuen vermessen - Gallerthüllen bleiben dabei unberücksichtigt (vgl. WILLEN 1976, ROTT 1981) - und den verschiedenen Arten einfache geometrische Formen und entsprechende mathematische Formeln zugeordnet (ROTT 1981 + 1983, DEISINGER 1984, Phytoplanktonkartei des Botanischen Instituts der Universität Innsbruck sowie Eigenermittlung (s. HOEHN *et al.* 1998), vgl. Tabelle 2). Daraus kann das Biovolumen der Einzelzellen berechnet und durch Bildung der Mittelwerte auf das mittlere Biovolumen der jeweiligen Art geschlossen werden. Als Mittelwert wird der Medianwert (vgl. PRECHT & KRAFT 1993) verwendet.

Das Gesamtbiovolumen pro Liter einer Art ergibt sich durch Multiplikation der mittleren Artbiovolumina mit der jeweiligen Zellkonzentration (Zellzahl/L). Die Biovolumina der verschiedenen Spezies werden dann zum Gesamtvolumen des Phytoplanktons aufsummiert. Da sich die

spezifische Dichte der im Wasser frei schwebenden Phytoplankter von der des Wassers kaum unterscheidet, wird nach LOHMANN (1908) das Biovolumen der Frischmasse gleichgesetzt:

1 mm³ Biovolumen = 1 mm³ Wasservolumen und entspricht 1 mg Frischmasse.

⇒ Biomasse- und Biovolumen-Angaben:

 $\Rightarrow 1 \,\mu g/L = 1 \,mm^3/m^3$

 \Rightarrow 1 mg/L = 1 cm³/m³ = 1 mm³/L

Die grafische Darstellung der Algengruppen in den Kapiteln erfolgt in der Einheit der Biomasse mit der Dimension μ g/L. In den Klassifikations- und Bewertungsverfahren wird die Einheit mm³/L und die Bezeichnung Biovolumen verwendet.

Tabelle 2: Zellformen und zugehörige Volumenberechnungsformeln zur Bestimmung des Phytoplanktonbiovolumens.

Symbol und Körperform	Berechnungsformel
2 = zwei Dreh-Ellipsoide	Volumen = $2*(\pi/6*(lang*(breit/2)*(breit/2)))$
3 = Dreiecks-Säule (Länge = Kantenlänge, Höhe = Breite)	Volumen = $(1/2*lang*(\frac{1}{2}*lang*\sqrt{3}))*breit$
4 = 4-Arm (4-Zack) (Tetraeder +4*Zylinder: <i>Treubaria</i>)	Volumen = $(4^*(((breit/2)^2 \pi)^* lang) + (((breit^3)/12)^* \sqrt{2})$
5 = Dreiecks-Säule (Länge = Kantenlänge, Höhe = ½ Breite)	Volumen = $(1/2*lang*(\frac{1}{2}*lang*\sqrt{3}))*(breit/2)$
C = Eistüte (Cone)	Volumen = $\pi/12$ *breit*breit*((breit/2)+lang)
d = "Doppelkugel"	Volumen = $(\pi/6*lang*breit*breit)+(\pi/6*breit*breit*breit)$
D = Dreh-Ellipsoid	Volumen = $\pi/6$ *(lang*breit*breit)
E = Ellipsoid bei anderen Gruppen (ohne Dinophyceen)	Volumen = $\pi/6*(lang*breit*(breit*0,65))$
E = Ellipsoid bei Dinophyceen	Volumen = $\pi/6*$ (lang*breit*(breit*0,82))
F = Dreieckspyramide	Volumen = 1/3*((lang*breit*0,5)*(0,8*breit))
H = Spindel	Volumen = $2*\pi/15*$ breit*breit*lang
J = Doppelkegel	Volumen = $2/3*\pi*((1/2*breit)^2)*1/2*lang$
k = Kegel	Volumen = $(\pi/12)^*$ (breit ² *lang)
K = Kugel	Volumen = $\pi/6$ *(lang*lang*breit)
P = zwei Dreieckspyramiden	Volumen = 2*(1/3*(1/2*breit*((sin 60°)*breit))*(lang/2))
q = Quader (Höhe <breite)< td=""><td>Volumen = lang*breit*(breit*0,33)</td></breite)<>	Volumen = lang*breit*(breit*0,33)
Q = Quader (Höhe=Breite)	Volumen = lang*breit*breit
s = Discus	Volumen = $\pi/8*lang*breit*(breit*0,5)$
S = elliptische Säule	Volumen = $\pi/4*lang*breit*(breit*0,66)$
T = 4 Dreieckssäulen (<i>Crucigenia</i> -Coenobium,Höhe=2/3*Breite)	Volumen = (lang*lang*(2/3*breit))/4
z = Zylinder (Durchmesser=Länge, Breite, Höhe= 0,35*Durchmesser)	Volumen = $\pi/4$ *breit*(breit*0,35)*lang
Z = Zylinder(Höhe=Länge, Durchmesser=Breite)	Volumen = $\pi/4$ *breit*(breit)*lang

2.3 Mikroskopische Bearbeitung und Biomasseberechnung von Planktothrix im Labor SWS

Von der Probe wurden 100-150 mL über 20 mm-Membranfilter gefiltert (vgl. HOEHN *et al.* 1998 Kap. 6.4). Die Filter wurden mikroskopisch untersucht und bei 100facher Vergrößerung abfotografiert. Diese Fotos wurden vergrößert und ausgedruckt. Die *Planktothrix*-Fadenstücke innerhalb eines Fotofeldes wurden ausgemessen und aufsummiert. Aus dem Ergebnis konnte auf die gesamte Fadenlänge in der Probe hochgerechnet werden. Aus Fadenlänge und Zellbreite ergibt sich das Biovolumen [mm³/L] der Probe.

2.4 Aufbereitung und Auswertung der pelagischen Diatomeenproben

Die Proben zur Diatomeenpräparation wurden als luftgetrocknete Filter aufbewahrt, über die 1.000 ml Probenwasser filtriert worden waren (Verfahren nach NIXDORF et al. 2008).

Aufschluss der Proben:

Die Filter werden nach VAN DER WERFF (1955) mit H₂O₂ und KMnO₄ aufgeschlossen. Von den Membranfiltern löst sich dabei der Filterrückstand mit den Diatomeen vollständig ab. Die so gewaschenen Membranfilter können dann entfernt werden. Die Proben werden durch Zentrifugation aufkonzentriert und mehrmals gewaschen. Der Aufschluss wird in beschriftete Schnappdeckelgläschen überführt und nach der Objektträgerpräparation zur Langzeitkonservierung durch Zugabe von 30-prozentiger Formaldehydlösung fixiert (KLEE & STEINBERG 1987, HOFMANN 2005).

Herstellung der Objektträger-Präparate:

Das aufgeschlossene Probenmaterial wird auf fettfreie Deckgläschen (in Spülmittelwasser geschwenkt) aufgetropft bis diese vollständig benetzt sind und anschließend zum Trocknen über Nacht aufbewahrt. Nachdem das Diatomeen-Material getrocknet ist, werden die Objektträger mit je einem Tropfen Naphrax versehen und die Deckgläschen mit der beschickten Seite nach unten schräg aufgelegt. Zum Austreiben des Lösungsmittels werden die Präparate mit einer Heizplatte auf ca. 80°C erhitzt bis sie ca. 5-10 Sekunden lang Blasen werfen. Zum Abkühlen werden die Präparate auf einer erschütterungsfreien ebenen Oberfläche gelagert.

Mikroskopische Auswertung:

In den Streupräparaten werden je 200 Objekte mit 100fach-Ölimmersionsobjektiv auf Artniveau bestimmt. Hierzu werden durch die gesamte Fläche des Präparates in regelmäßigen Abständen senkrechte Zählstreifen gelegt. Die Bestimmung erfolgte überwiegend nach KRAMMER & LANGE-BERTALOT (1991-1995), LANGE-BERTALOT (1993) und HOFMANN et al. (2011). Die Zählung erfolgt in den gleichen Größenklassen wie die quantitativen Auszählungen in den UTERMÖHL-Kammern. Nachdem die prozentuale Artenzusammensetzung der Größenklassen aus den Schalenpräparaten ermittelt sind, können diese auf die quantitativen Zählungen aus der UTERMÖHL-Kammer übertragen und die Größenklassenbiovolumina durch die Artenbiovolumina ersetzt werden (NIXDORF et al. 2008).

Größenklassen centrischer Diatomeen, die im Schalenpräparat, jedoch nicht in der UTERMÖHL-Kammer gefunden werden, gehen nicht mit in die Berechnung ein. Größenklassen centrischer Diatomeen, die in der UTERMÖHL-Kammer, nicht aber im Präparat nachgewiesen sind, gehen als unbekannte centrische Diatomeen der entsprechenden Größenklasse ein. Pennate Diatomeen werden im Präparat auf Artniveau bestimmt, wenn die Biomasse der jeweiligen Größenklasse aus der UTERMÖHL-Zählung 4% überschreitet. In diesem Fall wird die Verteilung mehrerer verschiedener

Arten in einer Größenklasse anhand einer überblickshaften Durchmusterung des Diatomeenpräparats abgeschätzt.

2.5 Bearbeitung der Zooplanktonproben und Biomasseberechnung

Die Crustaceenprobe wurde für die quantitative Auszählung der Crustaceen mit dem flächenäquivalenten Probenteiler nach GELLER (SCHWOERBEL 1994) geteilt. Zum Zählen - bei 40facher Vergrößerung in einer Mäanderzählschleife - wurden so viele Flächenäquivalente entnommen, wie nötig waren, um möglichst 100 Individuen der dominanten Copepoden- und Cladocerenart zu finden.

Für die Auszählung der Rotatorien wurde die Probe in vier Utermöhlkammern (je nach Individuendichte die gesamte Probe bzw.1/4 oder 1/16 der Probe) so angesetzt, dass mindestens 100 Individuen ausgezählt werden konnten.

Zur Bestimmung des Zooplanktons wurden im Wesentlichen folgende Werke herangezogen: EINSLE (1993), AMOROS (1984), FLÖßNER (2000) und VOIGT & KOSTE (1978).

Die Berechnung der Biomasse (Frischgewicht) des Zooplanktons erfolgte über die Bestimmung der Körpervolumina. Um diese auszurechnen, wurden Längen- und Breitenmessungen mit Hilfe einer kalibrierten Okularskalierung bzw. über die Bildverarbeitung (Intec EasyMeasure 1.7) vorgenommen. Entsprechend den Angaben in der Literatur (HOEHN *et al.* 1998) wurden den Organismen einfache geometrische Formen zugeordnet. Die Messung der einzelnen Individuen erfolgte über den gesamten Probenahmezeitraum. Für die Berechnung der Zooplanktonbiomasse wurden die Medianwerte (vgl. PRECHT & KRAFT 1993) aller berechneten Volumina der jeweiligen Taxa verwendet. Aus den Zählergebnissen (Individuen/L) kann somit die Biomasse in μg/L (Frischgewicht) errechnet werden. Dies beruht auf der Annahme, dass Planktonorganismen etwa dasselbe spezifische Gewicht wie Wasser (1 g/cm³) besitzen (LOHMANN 1908). Demnach entspricht 1 μg Frischgewicht 1.000.000 μm³ Biovolumen.

2.6 Grundlagen der Trophieklassifikation mit dem Trophieindex nach LAWA und der Bewertung mit Phytoplankton

Die Ermittlung des Trophiestatus – die Trophie-Klassifikation – erfolgte bisher für Talsperren nach der sogenannten LAWA-Talsperren-Richtlinie (2001). Im vorliegenden Bericht wird der neue in einem LAWA-Projekt entwickelte Trophie-Index nach LAWA gemäß RIEDMÜLLER *et al.* (2013c) angewandt. Weitere Details und Herleitungen sind auch dem Projektbericht RIEDMÜLLER *et al.* (2013a) zu entnehmen.

Tabelle 3: Trophie-Klassifikation: Index-Wertebereiche, trophische Zuordnung und Abkürzungen (mesotropher Status wird abweichend von LAWA (1999) in zwei Klassen aufgesplittet).

PTSI/Trophie-Index (nach LAWA)	Trophieklasse	Abkürzung		
0,5-1,5	oligotroph	ol		
> 1,5 – 2,0	mesotroph 1	meso 1		
> 2,0 – 2,5	mesotroph 2	meso 2		
> 2,5 - 3,0	eutroph 1	eu 1		
> 3,0 - 3,5	eutroph 2	eu 2		
> 3,5 - 4,0	polytroph 1	poly 1		
> 4,0 - 4,5	polytroph 2	poly 2		
> 4,5	hypertroph	hyper		

Anhand des Phytoplankton-Taxa-Seen-Index PTSI kann eine auf Indikatorarten basierende Trophieklassifizierung erfolgen. Der Index berücksichtigt das Vorkommen von Indikatortaxa, deren absolutes Biovolumen in "Abundanzklassen" sowie die Qualität bzw. Habitattreue des jeweiligen Indikatortaxons. Der neue Trophie-Index und der PTSI besitzen die gleiche Skala wie der bisherige LAWA-Index und geben gemäß Tabelle 3 den Trophiestatus eines Sees an.

Die Bewertung anhand des Phytoplanktons erfolgt mit dem aktuellen PSI-Verfahren und der PhytoSee-Version 5.1 (MISCHKE *et al.* 2014, Stand Januar 2014).

Tabelle 4: Indexwerte von PSI und Einzelmetrics, Zustandsklassen der ökologischen Qualität (ÖQ) sowie Farbsignatur.

Indexwert des deutschen PSI bzw. der ökologischen Qualität (ÖQ)	ökologische Zustandsklasse/ ökologisches Potenzial			
0,5 – 1,5	1 = sehr gut (H = high)			
1,5 – 2,5	2 = gut (G = good)			
2,5 – 3,5	3 = mäßig (M = moderate)			
3,5 – 4,5	4 = unbefriedigend (P = poor)			
4,5 – 5,5	5 = schlecht (B = bad)			

Das in RIEDMÜLLER & HOEHN (2011) eingeführte Typologie-Kriterium für die Mittelgebirgstypen wird als "Volumen-Tiefen-Quotient" bezeichnet und ist der bereits in der LAWA-Typologie nach MATHES et al. (2002) verwendete VQ (= Volumenquotient) geteilt durch die mittlere Tiefe (s. Tabelle 5). Die Typologie sieht für geschichtete Seen in den beiden Calcium-Gruppen (Ca-Gehalt > 15 mg/L oder ≤ 15 mg/L) jeweils zwei VTQ-Typen vor.

Die Sengbachtalsperre ist maximal 36 m tief, die mittlere Tiefe beträgt 14 m. Bei einer Einzugsgebietsgröße von rund 12 km² und einem Seevolumen von 2,8 Mio. m³ ergibt sich ein Volumenquotient (Einzugsgebiet/Seevolumen) von rund 4,3 m⁻¹. Der Volumen-Tiefen-Quotient beträgt somit 0,3 m⁻². Der Calciumgehalt liegt im Mittel von 4 Jahren bei 15,7 mg/L. Aufgrund der Nähe dieses Wertes zur 15 mg/L-Grenze wurde entschieden, die Talsperre als Ca-arm anzusprechen. Somit ergibt sich der Phytoplankton-Seetyp 8 (s. Tabelle 5).

Tabelle 5: Typologische Einstufung der Sengbachtalsperre als Mittelgebirgs-Seetyp gemäß LAWA sowie Phytoplankton-Seetyp gemäß VTQ-Kriterium (RIEDMÜLLER & HOEHN 2011), die jeweilige "sehr gut/gut-Grenze" (H/G = high/good) und trophischer Referenzwert als Ankerpunkt der Bewertung.

Gewässer	Ca-Gehalt, Schichtung	VQ (m ⁻¹)		rQ n-Tiefen- nt) (m ⁻²)	Phyto- plankton- Seetyp	H/G- Grenze (Trophie- Index)	trophischer Referenzwert (Trophie-Index)
Sengbach- talsperre	Ca-arm Ca < 15 mg/L, geschichtet	4,3 = groß ≥ 1,5	0,3 = groß	≥ 0,18	8	1,75	1,25

VQ = Volumenquotient, VTQ = Volumen-Tiefen-Quotient, Grüne Felder = für die Typeinstufung relevante Kriterien.

VQ = Volumenquotient (m⁻¹) = Einzugsgebiet (m²) / Seevolumen (m³)

VTQ = Volumen-Tiefen-Quotient (m⁻²) = Einzugsgebiet (m²) / Seevolumen (m³) / mittlere Tiefe (m)

3 Ergebnisse

3.1 Sondenparameter

Die Sondenparameter werden als Isoplethengrafiken dargestellt. Dabei ist auf der Iinken Y-Achse der Talsperrenpegel [m ü. NN] und auf der rechten Y-Achse der dazugehörige Stauseeinhalt in Mio. m³ bzw. Gigaliter [GL] eingetragen. Die gemessenen Sichttiefen sind in Abb. 20 dargestellt.

3.1.1 Temperatur

Nach der Vollzirkulation im Frühjahr begann sich der Wasserkörper ab April thermisch einzuschichten (Abb. 2). Dabei reichte das Epilimnion etwa bis auf eine Wassertiefe von 15 m. Während des Sommers nahm die epilimnische Wassertemperatur bis auf 21° C zu. Gleichzeitig ging der Wasserstand der Talsperre aufgrund der Wasserentnahme deutlich zurück. Das Epilimnion hatte im Juli und August eine Wassertiefe von etwa 5 m und die sich daran anschließende Sprungschicht (Metalimnion) reichte bis auf eine Wassertiefe von etwa 15 m. Die Stabilität der Schichtung nahm durch die hypolimnische Wasserentnahme bis zum Spätsommer ab und das Tiefenwasser im Hypolimnion erwärmte sich daraufhin auf > 10° C. Ab Oktober ging der Wasserkörper in die Vollzirkulation über.

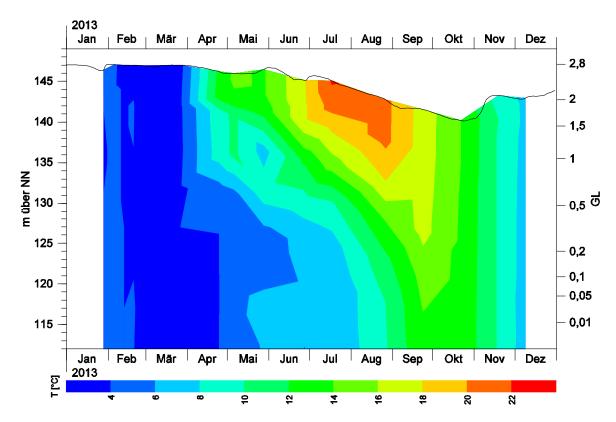


Abb. 2: Isoplethen der Temperatur, Sengbachtalsperre im Jahr 2013.

3.1.2 pH-Wert

Ein Anstieg des pH-Wertes bis auf maximal pH 9,3 trat während der Sommermonate in einer Wassertiefe von etwa 15 m und somit in Höhe des Metalimnions auf (vgl. Abb. 3 und Abb. 2). Es ist davon auszugehen, dass dieser Anstieg auf die Photosynthese-Aktivitäten der Blaualge Planktothrix rubescens zurückgeht. Diese Cyanobakterien, welche das Frühjahrsplankton in der Sengbachtalsperre dominiert haben, schichten sich während Stagnationsphasen bevorzugt im Metalimnion ein (vgl. Kap. 3.3). Das Auftreten eines metalimnischen Blaualgenmaximum wird durch die für Planktothrix rubescens erstellten Tiefenprofile belegt (vgl. Abb. 16, S. 25). Möglicherweise kam es sogar im Juli im unteren Bereich des Hypolimnions zu einem vermehrten Auftreten dieser Algen, da sowohl pH-Wert, als auch die Sauerstoffkonzentration in diesem Tiefenbereich kurzzeitig anstiegen, während die Leitfähigkeit zurückging. Da im Juli die euphotische Tiefe bis auf etwa 13 m reichte (Secchitiefe von 4,8 m, vgl. Abb. 20), können sich auch die an schlechte Lichtverhältnisse angepassten Blaualgen in dieser großen Tiefe kaum noch entwickelt haben. Möglicherweise wurden diese aber durch die in der Tiefe stattfindende Rohwasserentnahme aus dem Metalimnion in den unteren Bereich des Hypolimnions verschleppt. Normalerweise kommt es im Hypolimnion während der Stagnationsphasen eher zu einem Rückgang des pH-Wertes, da beim Abbau toter Algenbiomasse u. a. CO₂ freigesetzt wird. Dementsprechend ging der pH-Wert bis zum Ende der Sommerstagnation im unteren Bereich des Hypolimnions bis auf pH 6,8 zurück.

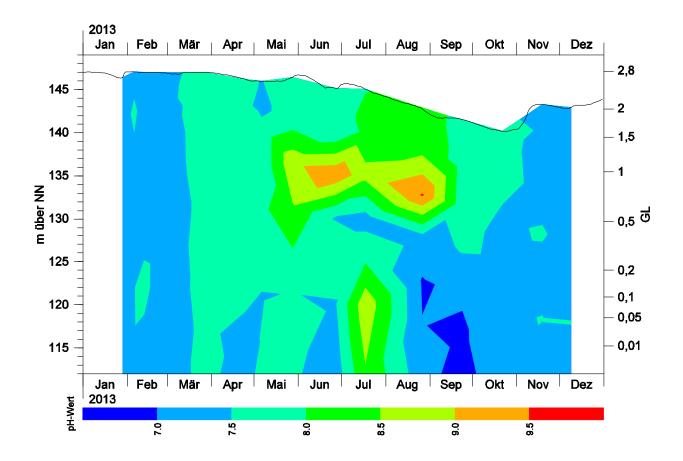


Abb. 3: Isoplethen des pH-Werts, Sengbachtalsperre im Jahr 2013.

3.1.3 Leitfähigkeit

Da Calcium und Magnesium oberhalb eines pH-Wertes von 8,2 zunehmend als Carbonate ausgefällt werden, wird die Leitfähigkeit in der euphotischen Zone indirekt durch die Assimilationstätigkeit der Phytoplankter beeinflusst (Anstieg des pH-Wertes durch Entzug der Kohlensäure), welche zu einer Abnahme der Leitfähigkeit führt. Bei einem weiteren Anstieg des pH-Wertes erhöht sich die Leitfähigkeit durch die Zunahme der OH⁻-Ionen wieder. Ein Rückgang der Leitfähigkeit trat im Jahr 2013 während der starken Blaualgenblüte von März bis Februar auf (Abb. 4). Mit dem Einsetzen der Sommerstagnation nahm die Leitfähigkeit im Epilimnion zu, da sich nun das Algenwachstum auf den Bereich des Metalimnions konzentrierte (s. o.). Im Spätsommer stieg die Leitfähigkeit in der gesamten Wassersäule auf > 200 µS/cm an. Bei einem Sauerstoffschwund (O₂-Zehrung durch den Abbau organischer Materie im Hypolimnion) an der Sedimentoberfläche kommt es zur Rücklösung im Sediment gebundener Mineralien (Eisen, Mangan, Phosphat, Silicium, Hydrogencarbonat u. a.) und damit zu einem Anstieg der Leitfähigkeit in diesem Bereich. Dies war vermutlich im September und Oktober der Fall, da es über dem Sediment zu einer starken Sauerstoffzehrung gekommen war (vgl. Abb. 5). Kurzzeitig kam es im Juli zu einem Rückgang der Leitfähigkeit im Hypolimnion, was ebenfalls ein Anzeichen dafür ist, dass Planktothrix rubescens bis in den unteren Bereich des Hypolimnions gelangt ist.

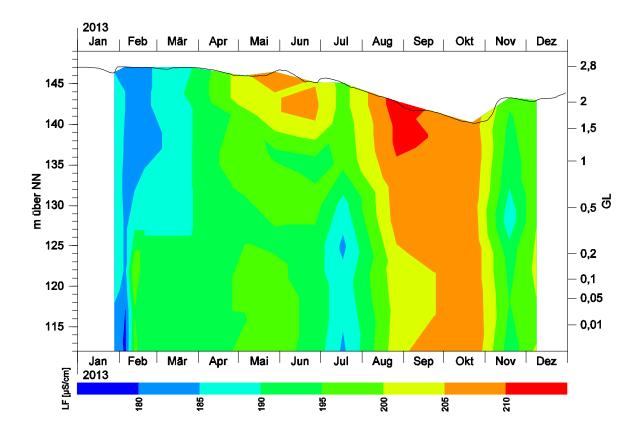


Abb. 4: Isoplethen der Leitfähigkeit, Sengbachtalsperre im Jahr 2013.

3.1.4 Sauerstoff

Die Photosynthese-Aktivitäten der Planktonalgen hatten während der Algenblüte im Frühjahr eine leichte Sauerstoffübersättigung in der gesamten Wassersäule zur Folge (Abb. 5 und Abb. 6). Während der Sommerstagnation schichtete sich die bis dahin dominante Alge *Planktothrix rubescens* im Tiefenbereich des Metalimnions ein (vgl. Kap. 3.1.2 und 3.3), so dass hier metalimnische Sauerstoffmaxima auftraten. Im Juli scheinen sich diese Algen sogar bis über den Grund der Talsperre entwickelt zu haben, bzw. wurden sie dorthin verdriftet (vgl. Kap. 3.1.2). Das metalimnische Sauerstoffmaximum auf einer Höhe von etwa 15 m stimmt mit dem maximalen Aufkommen an *Planktothrix rubescens* überein (Abb. 16, S. 25).

Eine Sauerstoffzehrung, die auf den Abbau toter Planktonbiomassen während der Stagnationsphasen im Hypolimnion zurückgeht, wurde in der Sengbachtalsperre nur kurzzeitig Ende September beobachtet, als auch in den tieferen Bereichen der Talsperre keine Blaualgen mehr auftraten (vgl. Abb. 16, S. 25). Mit dem Einsetzen der Vollzirkulation im Herbst waren alle Tiefenbereiche wieder mit Sauerstoff versorgt. Die kurzzeitige Sauerstoffzehrung hatte jedoch zur Folge, dass Phosphate aus den Sedimenten rückgelöst wurden (Abb. 7).

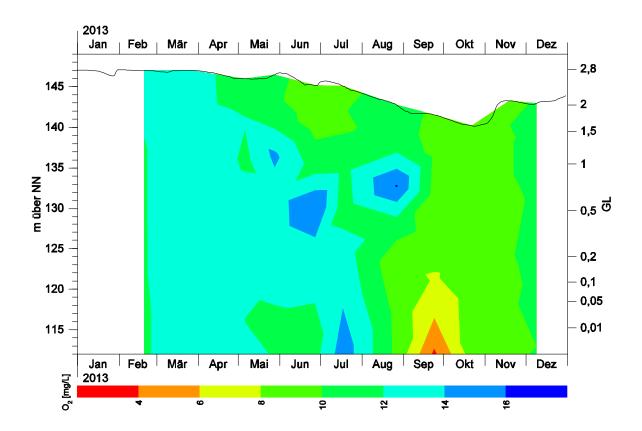


Abb. 5: Isoplethen des gelösten Sauerstoffs, Sengbachtalsperre im Jahr 2013.

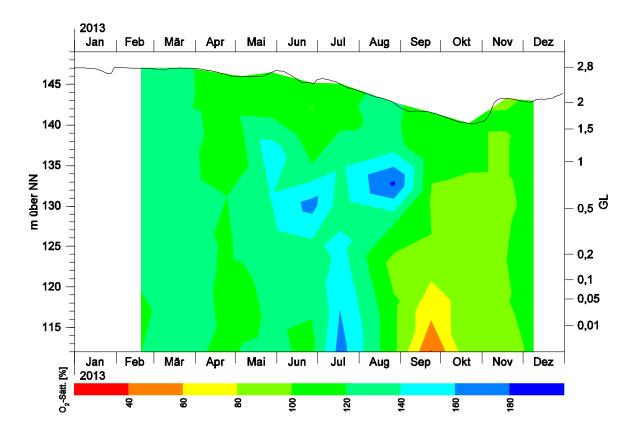


Abb. 6: Isoplethen der Sauerstoffsättigung, Sengbachtalsperre im Jahr 2013.

3.2 Wasserchemie

3.2.1 Phosphor

Die Konzentration an Gesamtphosphat lag als zeit- und tiefenintegrierter Mittelwert im Jahr 2013 bei 13 µg/L (Abb. 7). Ein Rückgang bis unter die Nachweisgrenze wurde mehrmals während der Algenblüte im Frühjahr festgestellt. Da von den Planktonalgen die Fraktion des ortho-Phosphats direkt aufgenommen werden kann, geht dessen Konzentration in der euphotischen Zone meist deutlich zurück. Allerdings sollte der dann in den Algen befindliche, organisch gebundene Phosphor im Gesamtphosphat weiterhin nachweisbar sein.

Über dem Sediment ist es am Ende der Sommerstagnation, im September, offenbar zu Rücklösungsprozessen gekommen, wobei maximal 112 μ g/L im unteren Bereich des Hypolimnions festgestellt wurden. Die im April über dem Grund gemessene Konzentration von 625 μ g/L erscheint unplausibel und geht vermutlich auf einen Messartefakt (z. B. Verunreinigung der Probe durch Sediment) zurück. Dieser Wert wurde daher in der Darstellung durch 10 μ g/L ersetzt.

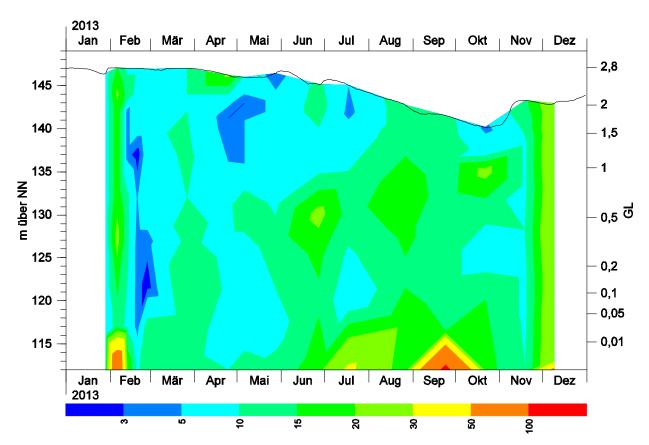


Abb. 7: Gesamt-Phosphat-P-Konzentrationen [µg/L] in der Sengbachtalsperre im Jahr 2013.

3.2.2 Stickstoff

Die Konzentration an Nitrat war bis in den Mai mit knapp $4.000 \,\mu\text{g/L}$ in der gesamten Wassersäule ausgesprochen hoch (Abb. 8). Durch das starke Algenwachstum gingen die Konzentrationen im weiteren Jahresverlauf zurück, bzw. kam es aufgrund der Sauerstoffzehrung zu einer Reduktion des Nitrat zu Nitrit (Abb. 9) und im geringerem Umfange auch zu Ammonium (Abb. 10).

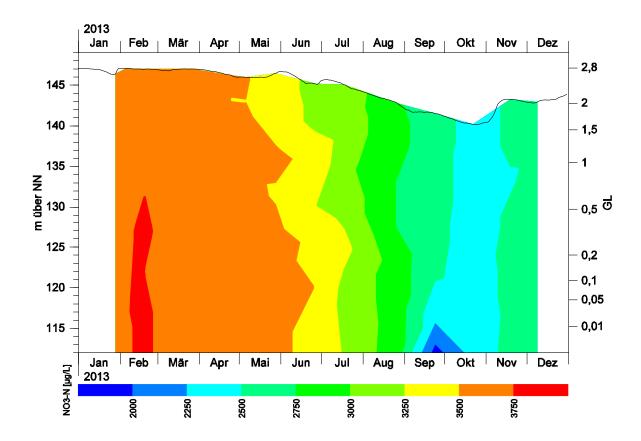


Abb. 8: Nitrat-N-Konzentrationen [µg/L] in der Sengbachtalsperre im Jahr 2013.

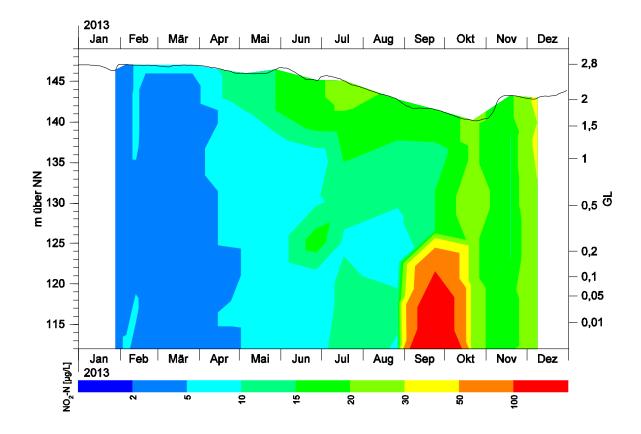


Abb. 9: Nitrit-N-Konzentrationen [µg/L] in der Sengbachtalsperre im Jahr 2013.

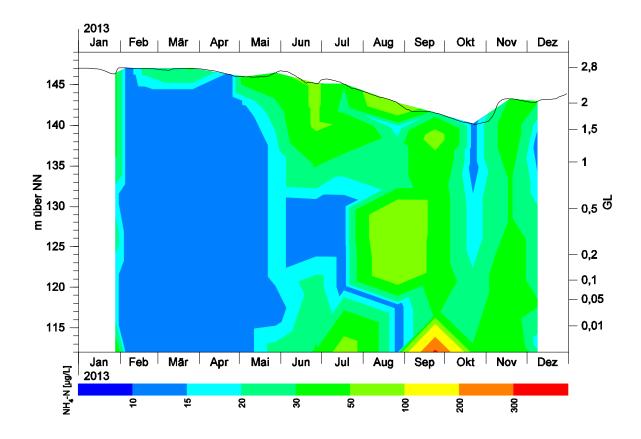


Abb. 10: Ammonium-N-Konzentrationen [$\mu g/L$] in der Sengbachtalsperre im Jahr 2013.

3.2.3 Silicium

In der Sengbachtalsperre lag die Siliciumkonzentration (SiO₂-Si) bis Mitte Juni bei etwa 3 mg/L (Abb. 11). Nach WETZEL (1983) ist bereits eine Konzentration von 0,5 mg/L für das Wachstum der Kieselalgen nicht mehr limitierend, so dass sich Diatomeen gegenüber anderen nicht auf Silicium angewiesenen Algen durchsetzen und höhere Biomassen entwickeln könnten. Tatsächlich kam es im Herbst zu einem vermehrten Aufkommen der Kieselalgen, wodurch die Silicium-Konzentration deutlich zurückging.

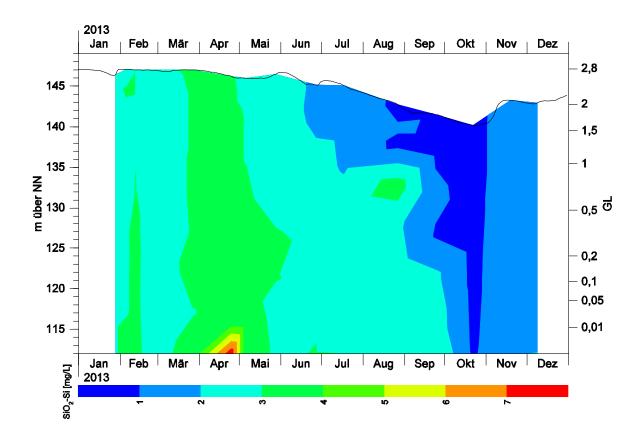


Abb. 11: Silikat-Silicium-Konzentrationen [mg/L] in der Sengbachtalsperre im Jahr 2013.

3.3 Phytoplankton

3.3.1 Artenliste und Biovolumina

In Tabelle 6 sind alle im Jahr 2013 in der Talsperre und in der Trinkwasseraufbereitung (TWA) aufgefundenen Phytoplankter mit Längen- und Breitenangaben sowie deren Volumina (jeweils als Medianwert) zusammengestellt.

Tabelle 6: Artenliste des Phytoplanktons der Sengbachtalsperre und deren Mediane der Längen, Breiten und Biovolumina (Vol.) [µm bzw. µm³]. Unter "F" findet sich der zugeordnete geometrische Körper zur Berechnung des Biovolumens (Hoehn *et al.* 1998, Tabelle 2). ID und DV-Nummern (= DV-Code der Bundestaxaliste) sind der Harmonisierten Taxaliste aus Mischke & Kusber 2009 und der Taxaliste der Gewässerorganismen Deutschlands (Stand 2011) entnommen.

Artname	ID	DV	F	Lang	Breit	Vol.	Taxonomische Gruppe
Aphanothece clathrata var. brevis	66	8424	D	2,7	1,2	2,0	Cyanobakterien (Chroococcales)
Chroococcus microscopicus	1806	8272	K	1,6	1,4	1,9	Cyanobakterien (Chroococcales)
Chroococcus minutus	135	8234	D	4,9	6,9	122,1	Cyanobakterien (Chroococcales)
Coelosphaerium kuetzngianum	187	8115	D	2,2	2,1	5,1	Cyanobakterien (Chroococcales)
Microcystis aeruginosa	452	8153	K	3,9	3,5	27,9	Cyanobakterien (Chroococcales)
Pikoplankton	791	8023	K	1,0	1,0	0,5	Cyanobakterien (Chroococcales)
Woronichinia naegeliana	821	8189	D	4,9	3,5	31,4	Cyanobakterien (Chroococcales)
Aphanizomenon flos-aquae	54	8031	D	6,4	4,4	64,9	Cyanobakterien (Hormogonales)
Geitlerinema splendidum	1590	8175	Z	2,9	3,6	29,5	Cyanobakterien (Hormogonales)
Limnothrix redekei	432	8434	Z	5,2	2,3	21,8	Cyanobakterien (Hormogonales)
Oscillatoria limosa	522	8001	Z	3,7	12,9	483,6	Cyanobakterien (Hormogonales)
Phormidium sp.	573	8015	Z	2,2	2,1	7,6	Cyanobakterien (Hormogonales)
Planktothrix (Oscillatoria) rubescens	586	8440	Z	6,7	6,4	220,4	Cyanobakterien (Hormogonales)
Planktothrix rubescens (Zellen 2,5-3,0 µm lang)	586	8440	Z	2,9	5,8	76,6	Cyanobakterien (Hormogonales)
Planktothrix rubescens (Zellen 3,0-3,5 µm lang)	586	8440	Z	3,3	6,1	95,9	Cyanobakterien (Hormogonales)
Planktothrix rubescens (Zellen 3,5-4,0 µm lang)	586	8440	Z	3,9	5,9	106,6	Cyanobakterien (Hormogonales)
Planktothrix rubescens (Zellen 4,0-4,5 µm lang)	586	8440	Z	4,3	6,0	121,3	Cyanobakterien (Hormogonales)
Pseudanabaena catenata	594	8008	D	4,9	1,0	2,6	Cyanobakterien (Hormogonales)
Pseudanabaena limnetica	596	8206	Z	3,5	1,7	7,9	Cyanobakterien (Hormogonales)
Aulomonas purdyi	1516	17533	Ε	5,8	2,2	9,6	Chrysophyceae
Bicosoeca ainikkiae	85	7581	Ε	7,6	5,6	81,1	Chrysophyceae
Bicosoeca campanulata	86	7582	Ε	6,8	5,1	60,2	Chrysophyceae
Bicosoeca sp.	87	7441	Ε	5,8	5,0	69,8	Chrysophyceae
Bitrichia chodatii	90	7584	Ε	13,5	7,0	225,1	Chrysophyceae
Chromulina sp., mittel	131	7631	Ε	6,3	5,7	69,7	Chrysophyceae
Chrysochromulina parva	143	7211	Ε	5,9	5,8	67,2	Chrysophyceae
Chrysococcus minutus	1001	7450	Κ	5,7	5,7	103,0	Chrysophyceae
Chrysolykos planctonicus	151	7429	Ε	7,4	3,9	38,3	Chrysophyceae
Chrysophyceencyste mittel	793	17452	K	6,2	6,1	140,9	Chrysophyceae
Dinobryon crenulatum	297	7400	D	9,1	5,8	162,1	Chrysophyceae
Dinobryon divergens	299	7937	D	11,6	7,6	350,8	Chrysophyceae

Artname	ID	DV	F	Lang	Breit	Vol.	Taxonomische Gruppe	
Dinobryon divergens Cyste	299	7937	K	11,5	11,1	768,6	Chrysophyceae	
Kephyrion/Pseudokephyrion sp.	1047	7403	D	6,7	4,3	63,7	Chrysophyceae	
Mallomonas akrokomos	438	7308	Н	24,7	4,1	166,6	Chrysophyceae	
Mallomonas akrokomos Cyste	438	7308	D	10,2	6,9	254,3	Chrysophyceae	
Mallomonas sp. klein	443	7306	D	16,7	8,9	865,5	Chrysophyceae	
Monosiga sp.	384	7627	D	4,3	3,2	23,1	Chrysophyceae	
Ochromonas sp. mittel	512	7644	Ε	6,8	6,9	110,2	Chrysophyceae	
Pseudokephyrion circumvallatum	1685	7406	D	7,2	4,5	75,1	Chrysophyceae	
Pseudokephyrion entzi	599	7407	D	6,6	5,2	93,4	Chrysophyceae	
Pseudopedinella erkensis	601	17313	В	9,2	10,9	685,9	Chrysophyceae	
Salpingoeca ruttneri	1700	17488	D	7,8	4,0	65,3	Chrysophyceae	
Salpingoeca sp.	637	7457	D	6,3	3,2	33,8	Chrysophyceae	
Spiniferomonas sp.	895	17004	K	5,1	5,3	72,2	Chrysophyceae	
Synura sp.	740	7803	Ε	20,2	12,0	988,9	Chrysophyceae	
Uroglena sp.	811	7290	D	6,8	5,7	119,4	Chrysophyceae	
Goniochloris mutica	377	7295	D	1,0	1,0	0,5	Xanthophyceae	
Gyromitus cordiformis	1003	17449	S	18,7	17,6	1.212,5	Sonstige	
HNF	395	17465	D	11,2	4,7	126,6	Sonstige	
Aulacoseira distans	1277	36018	Z	12,4	9,0	788,9	Diatomeae (Centrales)	
Aulacoseira granulata	78	6785	Z	28,6	4,8	517,5	Diatomeae (Centrales)	
Aulacoseira sp.	83	6797	Z	12,4	8,5	703,6	Diatomeae (Centrales)	
Aulacoseira subarctica	84	6788	Z	28,8	6,0	822,8	Diatomeae (Centrales)	
centrale Diatomeae (5-10)	840	6789	Z	7,7	8,0	135,5	Diatomeae (Centrales)	
Cyclotella comensis (10-15)	252	6929	Z	10,5	10,5	318,2	Diatomeae (Centrales)	
Cyclotella comensis (5-10)	252	6929	z	6,6	6,6	78,9	Diatomeae (Centrales)	
Cyclotella costei (5-10)	254	26891	Z	6,0	6,0	59,4	Diatomeae (Centrales)	
Cyclotella ocellata (10-15)	261	6936	Z	12,5	12,7	573,6	Diatomeae (Centrales)	
Cyclotella ocellata (15-20)	261	6936	Z	15,1	15,1	946,4	Diatomeae (Centrales)	
Cyclotella ocellata (5-10)	261	6936	Z	7,3	7,3	106,9	Diatomeae (Centrales)	
Cyclotella radiosa (10-15)	264	6204	z	13,3	13,3	646,7	Diatomeae (Centrales)	
Cyclotella radiosa (15-20)	264	6204	z	16,6	16,6	1.257,4	Diatomeae (Centrales)	
Cyclotella radiosa (20-25)	264	6204	Z	23,7	22,6	3.327,5	Diatomeae (Centrales)	
Cyclotella radiosa (25-30)	264	6204	Z	25,4	25,8	4.620,4	Diatomeae (Centrales)	
Cyclotella radiosa (5-10)	264	6204	Z	9,9	9,9	266,7	Diatomeae (Centrales)	
Cyclotella sp. (0-5)	265	6146	Z	4,4	4,7	26,7	Diatomeae (Centrales)	
Cyclotella sp. (10-15)	265	6146	z	13,9	13,5	696,4	Diatomeae (Centrales)	
Cyclotella sp. (5-10)	265	6146	Z	7,7	8,0	135,5	Diatomeae (Centrales)	
Discostella pseudostelligera (5-10)	262	26895	z	6,6	6,6	79,0	Diatomeae (Centrales)	
Stephanodiscus alpinus (10-15)	717	6795	z	12,7	12,7	571,6	Diatomeae (Centrales)	
Stephanodiscus hantzschii (10-15)	721	6009	Z	13,6	13,2	651,4	Diatomeae (Centrales)	
Stephanodiscus minutulus (5-10)	723	6226	Z	6,8	6,8	86,4	Diatomeae (Centrales)	
Stephanodiscus sp. (15-20)	727	6942	Z	17,4	17,1	1.398,6	Diatomeae (Centrales)	
Stephanodiscus sp. (0-5)	727	6942	Z	3,8	3,8	15,1	Diatomeae (Centrales)	

Artname	ID	DV	F	Lang	Breit	Vol.	Taxonomische Gruppe	
Stephanodiscus sp. (10-15)	727	6942	-	12,0	11,8	475,9	Diatomeae (Centrales)	
Stephanodiscus sp. (5-10)	727	6942		8,2	8,2	151,6	Diatomeae (Centrales)	
Stephanodiscus sp. (20-25)	727	6942		20,5	20,5	2.368,2	Diatomeae (Centrales)	
Achnanthidium catenatum	3	26012	Q	10,5	1,5	23,6	Diatomeae (Pennales)	
Achnanthidium minutissimum	4	36012	Q	11,4	4,8	278,5	Diatomeae (Pennales)	
Asterionella formosa	72	6050		71,8	3,0	664,0	Diatomeae (Pennales)	
Cocconeis sp. klein	178	6145		24,3	13,0	2.136,1	Diatomeae (Pennales)	
Cymbella sp. klein	273	6157	S	12,0	5,7	202,1	Diatomeae (Pennales)	
Cymbella sp. mittel	273	6157	S	91,0	28,1	37.2467	Diatomeae (Pennales)	
Fragilaria capucina	336	16570	Q	62,8	3,1	603,5	Diatomeae (Pennales)	
Fragilaria crotonensis	342	6075	Q	88,5	3,3	963,8	Diatomeae (Pennales)	
Fragilaria sp. mittel	347	6161	Q	67,0	2,6	452,9	Diatomeae (Pennales)	
Fragilaria ulna angustissima-Sippenkomplex	349	6410		337,2	7,2	17.480	Diatomeae (Pennales)	
Gomphonema coronatum	0	16705	S	58,8	9,4	2.693,2	Diatomeae (Pennales)	
Gyrosigma acuminatum	392	36096		126,1	16,3	17367	Diatomeae (Pennales)	
Navicula cryptocephala	881	36114	S	22,1	5,5	346,5	Diatomeae (Pennales)	
Navicula cryptotenella	1190	6889	S	20,7	4,9	257,6	Diatomeae (Pennales)	
Navicula gregaria	983	6015	S	24,4	6,5	534,4	Diatomeae (Pennales)	
Navicula sp. klein	486	6990	S	25,0	6,3	518,0	Diatomeae (Pennales)	
Navicula sp. mittel	486	6990	S	40,9	10,7	2.427,3	Diatomeae (Pennales)	
Nitzschia acicularis-Formenkreis	494	16856	S	66,1	2,6	231,6	Diatomeae (Pennales)	
Nitzschia sp. groß	506	6972	Q	171,6	8,1	11259	Diatomeae (Pennales)	
Nitzschia sp. klein	506	6972	Q	22,7	4,9	603,8	Diatomeae (Pennales)	
Nitzschia sp. mittel	506	6972	Q	39,2	4,4	939,0	Diatomeae (Pennales)	
Nitzschia tabellaria	0	26696	S	22,3	9,2	978,4	Diatomeae (Pennales)	
Surirella sp. groß	734	6952	S	187,2	77,9	588863	Diatomeae (Pennales)	
Tabellaria flocculosa (lange Form)	743	36222	Q	61,0	9,5	5442,4	Diatomeae (Pennales)	
Amphidinium elenkinii	912	17126	Ε	9,6	7,8	249,7	Dinophyceae	
Ceratium hirundinella	104	7239		0,0	0,0	85.193	Dinophyceae	
Gymnodinium helveticum	388	7227	С	45,0	28,4	12.501	Dinophyceae	
Gymnodinium lantzschii	389	7153	Ε	13,8	9,3	608,6	Dinophyceae	
Gymnodinium uberrimum	385	17085	Ε	31,5	32,4	14.198	Dinophyceae	
Peridinium willei	560	7258	E	56,6	62,5	99.600	Dinophyceae	
Chlamydomonas sp. klein	116	7021	D	5,8	5,5	91,9	Phytomonadina	
Chlamydomonas sp. mittel	115	7021	D	13,0	4,7	150,4	Phytomonadina	
Chlamydomonas sp., rund	117	7021	D	10,5	10,4	618,8	Phytomonadina	
Pandorina morum	527	7054	D	9,8	7,4	281,0	Phytomonadina	
Paramastix conifera	530	4134	D	14,5	10,9	932,1	Phytomonadina	
Pyramimonas sp. klein	610	7436	D	7,1	8,1	243,9	Phytomonadina	
Scherffelia sp.	1712	7706	D	11,1	9,1	481,2	Phytomonadina	
Tetraselmis sp.	759	7491	D	14,4	10,2	784,4	Phytomonadina	
unb. Schwärmer (<i>Chlamydomonas</i> sp.)	806	7070	D	4,4	2,9	19,4	Phytomonadina	
unb. Volvocale klein	806	7070	D	7,4	6,6	168,8	Phytomonadina	

Artname	ID	DV	F	Lang	Breit	Vol.	Taxonomische Gruppe	
Ankyra ancora	48	7202	Н	101,8	6,1	1.586,7	Chlorococcales	
Ankyra judayi	49	7844	Н	27,0	1,4	21,4	Chlorococcales	
Botryococcus braunii	94	7237	D	8,0	7,0	205,3	Chlorococcales	
Choricystis chodatii	127	7155	D	3,7	2,8	16,1	Chlorococcales	
Coelastrum microporum groß	181	7023	K	10,7	11,3	677,4	Chlorococcales	
Coelastrum microporum mittel	181	7023	K	6,5	7,0	154,9	Chlorococcales	
Coenochloris sp.	192	7197	D	6,2	6,7	145,7	Chlorococcales	
Coenocystis sp.	76	17249	D	9,4	9,3	425,7	Chlorococcales	
Dictyosphaerium pulchellum	289	7033	D	8,7	8,7	344,8	Chlorococcales	
Dictyosphaerium sp.	290	7939	D	3,8	3,0	28,9	Chlorococcales	
Eutetramorus fottii mittel	331	7834	K	6,1	6,3	122,7	Chlorococcales	
Kirchneriella contorta	405	7832	Н	11,7	3,6	63,5	Chlorococcales	
Monoraphidium arcuatum	464	7071	Н	21,2	1,2	12,8	Chlorococcales	
Monoraphidium contortum	468	7245	Н	25,4	1,2	15,3	Chlorococcales	
Nephrochlamys subsolitaria	489	7322	D	7,9	3,2	42,4	Chlorococcales	
Oocystis sp. Dauerzelle	517	7250	D	15,1	15,2	1.826,7	Chlorococcales	
Oocystis sp. mittel	517	7250	D	9,7	5,5	153,6	Chlorococcales	
Planktosphaeria gelatinosa klein	582	7898	K	3,3	3,6	20,5	Chlorococcales	
Planktosphaeria gelatinosa mittel	582	7898	K	8,4	8,4	310,3	Chlorococcales	
Quadrigula pfitzeri	614	7339	Н	29,3	3,4	141,5	Chlorococcales	
Scenedesmus acuminatus	639	7049	D	27,9	5,3	410,4	Chlorococcales	
Scenedesmus acutus	641	7265	D	9,0	1,8	15,3	Chlorococcales	
Scenedesmus armatus	643	7979	D	8,6	2,6	29,3	Chlorococcales	
Scenedesmus quadricauda	669	7010	D	9,4	4,2	86,8	Chlorococcales	
Scenedesmus semipulcher	672	7699	D	9,4	3,6	63,8	Chlorococcales	
Scenedesmus sp. klein	676	7892	D	5,5	1,3	4,9	Chlorococcales	
Tetraedron minimum	751	7281	q	3,6	5,2	32,1	Chlorococcales	
Tetrastrum staurogeniaeforme	764	7285	D	2,7	3,3	15,4	Chlorococcales	
Tetrastrum triangulare	765	7286	D	4,7	4,7	54,4	Chlorococcales	
Willea irregularis	815	7291	D	9,5	5,0	124,4	Chlorococcales	
Elakatothrix genevensis	312	17179	Н	22,4	3,7	128,8	Ulotrichales	
Closterium parvulum var. angustum	170	7008	Н	1,0	1,0	0,4	Conjugatophyceae (Desmidiales)	
Chroomonas sp.	141	7980	D	11,9	5,3	175,0	Cryptophyceae	
Cryptomonas erosa/ovata klein	222	7966	Ε	21,2	13,3	1.403,7	Cryptophyceae	
Cryptomonas erosa/ovata mittel	222	7966	Ε	32,7	19,6	4.275,4	Cryptophyceae	
Cryptomonas marssonii	223	7926	Ε	24,9	10,5	934,3	Cryptophyceae	
Katablepharis ovalis	404	7151	E	8,8	4,8	69,0	Cryptophyceae	
Rhodomonas lacustris	628	7868	Ε	8,1	5,4	80,4	Cryptophyceae	
Rhodomonas lacustris var. lacustris	629	17469	С	10,0	5,8	111,2	Cryptophyceae	
Rhodomonas Iens	627	7894	E	9,8	7,6	188,6	Cryptophyceae	
Anisonema acinus	0	7101	E	15,4	9,1	434,0	Euglenophyceae	
Trachelomonas sp. klein	770	7065	D	16,7	16,3	2.323,2	Euglenophyceae	
Trachelomonas volvocina	771	7084	D	20,1	20,1	4.251,9	Euglenophyceae	

3.3.2 Phytoplanktonbiomassen und Artensukzession

In der ersten Jahreshälfte wurde das Phytoplankton in der Sengbachtalsperre von der fädigen Cyanobacterie *Planktothrix rubescens* dominiert (Abb. 12). Deren Biomasse lag zeitweise bei über 3.000 μg/L (Abb. 13 und Abb. 14). Während der Sommerstagnation schichten sich diese Blaualgen gewöhnlich im Bereich des Metalimnions ein. In diesem Tiefenbereich ist für die an schlechte Lichtverhältnisse angepassten Algen das einfallende Licht, das zur Photosynthese benötigt wird, ausreichend hoch, während gleichzeitig noch Nährstoffe (Phosphate) zur Verfügung stehen. In den vom Labor SWS ermittelten Tiefenprofilen der *Planktothrix*-Biomassen lässt sich erkennen, wie sich diese Blaualge nach der Zirkulationsphase im Metalimnion und darunter einschichtet, während das Epilimnion frei ist von *Planktothrix rubescens* (Abb. 16). Die höchst Konzentration trat dabei im Juni in einer Tiefe von etwa 15 m auf. In diesem Tiefenbereich lag die *Planktothrix*-Biomasse bei einem Maximum von > 10.000 μg/L, während in der gesamten Summenprobe (0-20 m) die Biomasse an Cyanobakterien bei 3.400 μg/L lag.

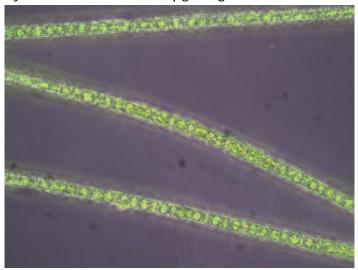


Abb. 12: Fäden von *Planktothrix rubescens* (Cyanobacteria) im Februar 2013 in der Sengbachtalsperre.

Erst im August änderte sich die Zusammensetzung des Phytoplanktons wesentlich. Der Anteil von *Planktothrix rubescens* ging von 70 auf 50% zurück (Abb. 15) und die pennate Diatomeae *Asterionella formosa* sowie die kleine centrische Art *Cyclotella comensis* kamen mit etwas höherer Biomasse auf. Dabei ging die Algenbiomasse insgesamt leicht zurück. Im September lag die Phytoplanktonbiomasse bei nur noch 600 µg/L, wobei jetzt hauptsächlich Chrysophyceen der Gattung *Synura* und die sehr kleine Art *Chrysochromulina parva* aufkamen. Bis zum Jahresende entwickelten sich dann wieder vermehrt pennate Diatomeen, wobei zunächst *Fragilaria crotonensis* und gegen Ende des Jahres *Tabellaria flocculosa* dominierten. Die Phytoplanktonbiomasse stieg dabei nochmals leicht auf etwa 1.000 µg/L an.

Cyanotoxine im Trinkwasser

Entsprechend der WHO Richtlinie für Trinkwasser ist der Grenzwert der Alarmstufe 1 oberhalb einer Biomasse an toxischen Cyanobakterien im Rohwasser von 200 µg/L bzw. einer Konzentration an 2.000 Zellen/L erreicht (CHORUS & BARTRAM 1999). Sowohl die Zellzahl als auch die Biomasse an *Planktothrix rubescens* lagen im Frühjahr 2013 über den Grenzwerten. Ist die Alarmstufe 1 erreicht wird empfohlen auf eine andere Entnahmetiefe auszuweichen oder durch Belüftungsmaßnahmen die Konzentration an Blaualgen zu verringern und eine Microcystinanalyse zu veranlassen. Im April wurde das Wasserwerk Glüder aufgrund der anhaltend hohen *Planktothrix*-Konzentrationen

vorsorglich vom Netz genommen. Die nächst höhere Alarmstufe 2 (Biomasse an Toxinbildnern > 10.000 µg/L bzw. > 100.000 Zellen/mL), bei der empfohlen wird auf andere Rohwasserquellen auszuweichen, wurde aber immer weit unterschritten. Prinzipiell ist hierfür die Biomasse der aussagekräftigere Parameter, da bei diesem die unterschiedlichen Zellgrößen der Toxinbildner berücksichtigt werden (z. B. zur Berücksichtigung von wenigen großen Zellen bei *Planktothrix*-Arten versus viele kleine Zellen u. a. in *Microcystis*-Kolonien).

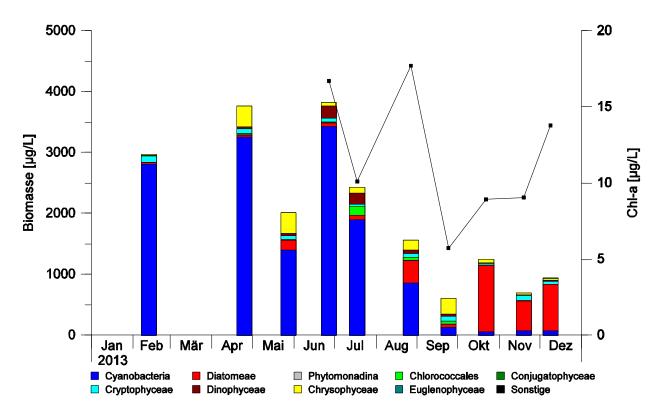


Abb. 13: Biomassen der Algengruppen [μg/L] und Chlorophyll-a-Konzentrationen in der Sengbachtalsperre im Jahr 2013.

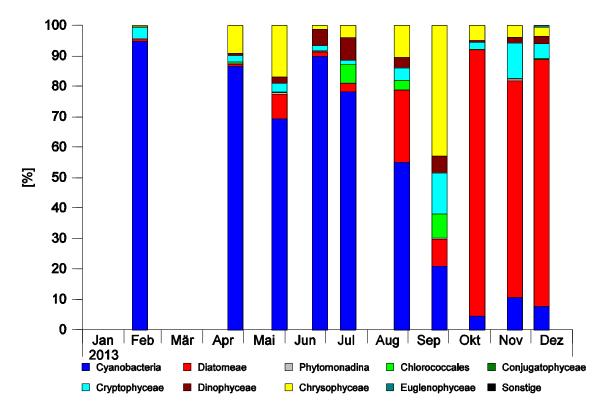


Abb. 14: Relative Anteile der Algengruppen an der Gesamtbiomasse im Jahr 2013.

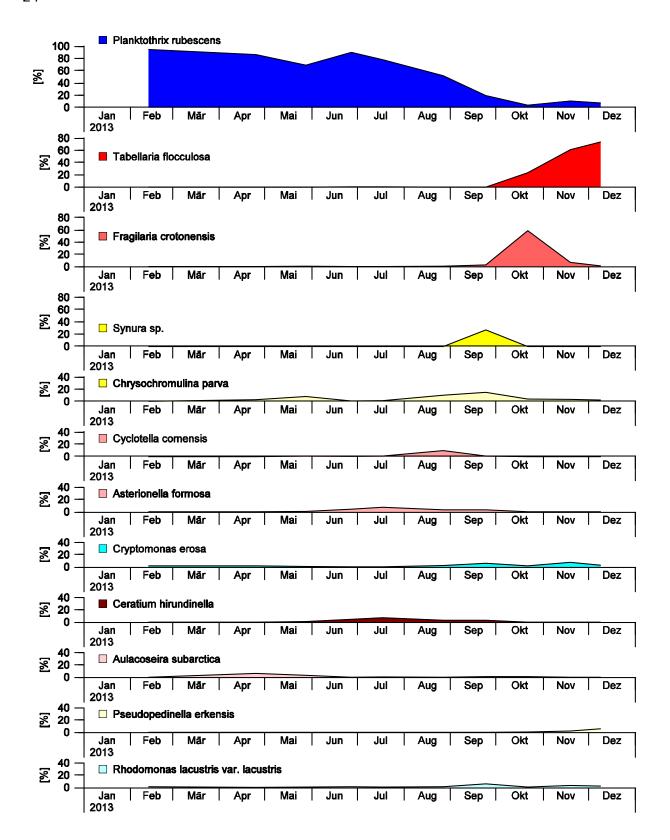


Abb. 15: Artensukzession des Phytoplanktons in der Sengbachtalsperre im Jahr 2013. Dargestellt ist die Biomasseentwicklung [% der Gesamtbiomasse] derjenigen Algenspezies, die zeitweise mehr als 5 % der Gesamtbiomasse erreichten.

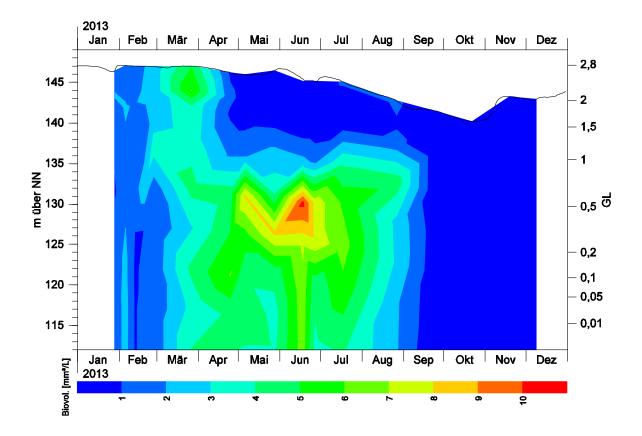


Abb. 16: Isoplethen des Biovolumens [mm³/L] von *Planktothrix rubescens* in der Sengbachtalsperre im Jahr 2013 (Daten Labor SWS).

3.4 Zooplankton

3.4.1 Rolle des Zooplanktons im Süßwasser

Das Zooplankton in Süßwasserseen setzt sich aus Ciliaten (Wimpertiere), welche in dieser Studie nicht untersucht wurden, Rotatorien (Rädertiere) und verschiedenen Klassen planktischer Süßwasserkrebse (Crustaceen) zusammen. Die Artenzusammensetzung der Zooplanktonbiozönose ist neben anderen hydrologischen und hydrochemischen Faktoren von dem Nährstoffgehalt des Gewässers abhängig. Dieser beeinflusst Quantität und Qualität des Phytoplanktons, das die Hauptnahrung der meisten Zooplankter ist. Die Entwicklung der Zooplankter und das Aufkommen bestimmter Arten werden daher wesentlich durch den Eutrophierungsgrad ihres Lebensraums beeinflusst (bottom-up Kontrolle). Andererseits prägen die Zooplankter durch Nahrungspräferenzen und die unterschiedlichen Arten der Nahrungsaufnahme die Phytoplanktongemeinschaft (DEMOTT 1989, GLIWICZ & PIJANOWSKA 1989).

Die Crustaceen sind in planktischen Lebensräumen hauptsächlich mit den Cladocera (Blattfußkrebse) und den Copepoda (Ruderfußkrebse oder Hüpferlinge) vertreten. Dabei sind die Cladoceren (z. B. Gattungen *Daphnia*, *Ceriodaphnia*, *Bosmina*, *Diaphanosoma*) und die calanoiden Copepoden (z. B. *Eudiaptomus gracilis*) sich überwiegend herbivor ernährende Filtrierer, während die cyclopoiden Copepoden (z. B. *Cyclops abyssorum*) als adulte Tiere meist zu einer carnivoren bzw. omnivoren Ernährungsweise übergehen.

Das herbivore Zooplankton kann die Wasserqualität mit seiner hohen Biofiltrationsrate entscheidend verbessern. Die Folgen können ein Rückgang der Phytoplanktonbiomasse, eine Zunahme der Sichttiefe und das Auftreten von Klarwasserstadien sein. Die Biofiltration auf das Phytoplankton ist dabei umso höher, je größer die Biomasse des herbivoren Zooplanktons ist, wobei vor allem das Aufkommen großer Cladoceren der Gattung *Daphnia* entscheidend ist. Das Aufkommen großer Daphnien wird jedoch bei einem zu hohen Bestand an Friedfischen, welche bevorzugt große Zooplankter erbeuten, unterdrückt (top-down Kontrolle).

3.4.2 Artenliste und Biovolumina der Rotatorien und Crustaceen

Im Jahresmittel setzte sich das Zooplankton in der Sengbachtalsperre überwiegend aus cyclopoiden Copepoden zusammen (Abb. 17). Große räuberische Cladoceren der Gattung *Leptodora* waren ebenfalls häufig sowie herbivore Cladoceren (Daphnien) und calanoide Copepoden. Kleinere Cladoceren der Gattungen *Ceriodaphnia* oder *Bosmina* traten gar nicht oder nur mit sehr geringen Biomassen auf. Auch die kleineren Rotatorien hatten einen eher geringen Anteil an der mittleren Zooplanktonbiomasse.

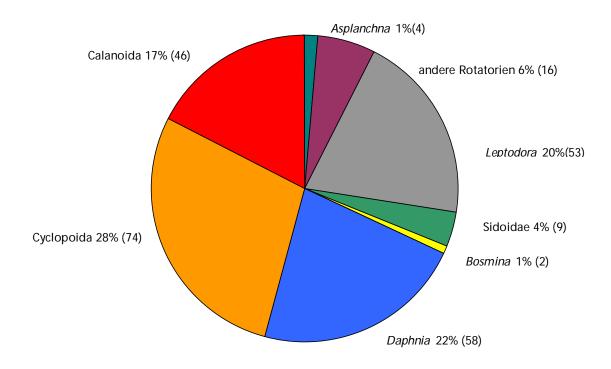


Abb. 17: Relative Zusammensetzung des Zooplanktons im Jahr 2013 (in Klammern die Biomasse in μg/L Frischgewicht als zeitgewichtetes Jahresmittel).

In Tabelle 7 sind die im Jahr 2013 in der Sengbachtalsperre aufgefundenen Zooplankter mit Angaben ihrer Längen- und Breitenmedianen sowie dem sich daraus errechnenden Biovolumen zusammengestellt.

Tabelle 7: Artenliste der Rotatorien und Crustaceen in der Sengbachtalsperre im Jahr 2013 und deren berechnete Mediane der Längen, Breiten und Biovolumina [µm bzw. µm³]. Unter Form findet sich die der jeweiligen Art zugeordnete Köperform zur Berechnung des Biovolumens (HOEHN *et al.* 1998, Tabelle 2).

Artname	DV_NR	F	Lang	Breit	Volumen	taxonomischeGruppe
Ascomorpha ovalis	5953	D	107,1	77,5	346.887,9	Rotatorien
Asplanchna priodonta < 0.4 mm	5098	D	250,1	234,5	7.201.086,2	Rotatorien
Asplanchna priodonta > 0.4 mm	5098	D	515,8	359,5	34.904.204,9	Rotatorien
Asplanchna priodonta Subitanei	5098	K	97,4	97,4	483.810,7	Rotatorien
Bdelloidea	5957	k	96,4	49,4	63.659,3	Rotatorien
Cephalodella sp.	5015	q1	61,2	47,1	44.803,0	Rotatorien
Collotheca mutabilis	15279	k	63,0	31,5	16.365,5	Rotatorien
Collotheca mutabilis Subitanei	15279	D	45,7	28,4	19.618,9	Rotatorien
Colurella sp.	5031	D	90,1	48,0	108.449,6	Rotatorien
Conochilus hippocrepis	5250	k	113,2	71,4	151.081,6	Rotatorien
Conochilus unicornis	5118	k	129,8	77,9	206.214,0	Rotatorien
Filinia longiseta	5148	D	155,8	90,9	674.052,7	Rotatorien
Gastropus cf. hyptopus	5150	D	120,1	83,2	435.638,6	Rotatorien
Gastropus hyptopus Dauerei	5150	D	77,9	51,8	109.444,9	Rotatorien
Gastropus hyptopus Subitanei	5150	D	63,8	46,4	71.705,3	Rotatorien
Gastropus stylifer	5932	D	123,3	84,4	411.395,0	Rotatorien
Gastropus stylifer Dauerei	5932	D	71,4	42,2	66.813,8	Rotatorien
Gastropus stylifer Subitanei	5932	D	71,4	42,2	66.813,8	Rotatorien
Hexarthra mira	5154	В	155,8	100,6	1.007.884,0	Rotatorien
Kellicottia longispina	5163	k	149,3	51,8	91.180,7	Rotatorien
Kellicottia longispina Subitanei	5163	D	84,4	42,2	79.911,3	Rotatorien
Keratella cochlearis	5331	V	110,3	64,9	38.456,1	Rotatorien
Keratella cochlearis Subitanei	5331	D	64,9	42,2	61.663,8	Rotatorien
Keratella quadrata	5166	q	136,3	87,7	351.747,8	Rotatorien
Keratella quadrata Subitanei	5166	D	84,4	51,8	91.180,7	Rotatorien
Lecane cf. lunaris	5169	i	97,4	77,9	77.581,0	Rotatorien
Lecane sp.	5038	i	62,0	57,4	23.963,4	Rotatorien
Lepadella ovalis	5041	i	110,3	71,4	91.778,9	Rotatorien
Notholca caudata	5314	Υ	258,1	94,2	630.763,2	Rotatorien
Notholca caudata Subitanei	5314	D	120,1	77,9	402.101,5	Rotatorien
Ploesoma hudsonii	5200	Е	320,4	171,9	3.504.621,8	Rotatorien
Ploesoma hudsonii Subitanei	5200	K	146,3	138,5	1.562.784,4	Rotatorien
Polyarthra dolichoptera	5202	q	123,3	64,9	171.382,5	Rotatorien
Polyarthra dolichoptera Subitanei	5202	D	84,4	51,8	118.577,0	Rotatorien
Polyarthra remata	5326	q	84,4	58,4	102.306,6	Rotatorien
Synchaeta cf. pectinata	5881	С	214,2	129,5	1.281.789,3	Rotatorien
Synchaeta cf. pectinata Subitanei	5881	K	284,6	193,5	8.352.638,5	Rotatorien
Synchaeta cf. tremula	5880	С	91,3	64,5	146.411,9	Rotatorien
Synchaeta cf. tremula Subitanei	5880	K	64,5	64,5	140.500,5	Rotatorien
Trichocerca sp.	5189	7	172,0	45,4	229.442,4	Rotatorien
unb. Rotator (Männchen)	0	D	60,9	36,9	43.417,9	Rotatorien
Chaoborus-Larve > 5.0 mm	481	Z	9737,5	859,4	6479130615,7	Sonstige
Käferlarve	0	Z	625,0	390,8	74968532,4	Sonstige
Nematode	5008	Z	179,0	9,7	15779,5	Sonstige
Oligochaet	0	Z	2031,7	140,7	33.578.846,8	Sonstige

Artname	DV_NR	F	Lang	Breit	Volumen	taxonomischeGruppe
Ostracode	5077	S	593,9	453,3	25.485.609,1	Sonstige
Leptodora kindtii < 1.0 mm	5160	Z	703,4	309,8	53.021.873,9	Leptodora
Leptodora kindtii > 10 mm	5160	Z	10.784,7	1.250,0	13.234.818.082,5	Leptodora
Leptodora kindtii 1.0-2.0 mm	5160	Z	1.328,2	218,8	60.230.978,4	Leptodora
Leptodora kindtii 2.0-3.5 mm	5160	Z	2.657,1	312,5	233.771.002,2	Leptodora
Leptodora kindtii 3.5-5.0 mm	5160	Z	3.790,3	383,0	436.931.769,3	Leptodora
Leptodora kindtii 5.0-10.0 mm	5160	Z	9.018,5	1.016,0	6.716.022.537,8	Leptodora
Leptodora kindtii Ei > 0.3 mm	5160	Z	429,8	429,8	63.897.865,4	Leptodora
Diaphanosoma brachyurum Ei > 0.25 mm	5136	D	281,4	125,0	2.301.789,3	Sidoidae
Diaphanosoma brachyurum < 0.5 mm	5136	r	359,5	140,7	1.673.463,9	Sidoidae
Diaphanosoma brachyurum 0.5-0.7 mm	5136	r	531,4	234,5	6.007.790,2	Sidoidae
Diaphanosoma brachyurum 0.7-1.0 mm	5136	r	805,0	390,7	23.411.114,4	Sidoidae
Diaphanosoma brachyurum 1.0-1.4 mm	5136	r	1.047,2	312,5	32.996.154,5	Sidoidae
Daphnia galeata Ei < 0.25 mm	5127	D	207,7	149,3	2.424.123,5	Daphnia
Daphnia galeata Ei > 0.25 mm	5127	D	281,3	156,3	3.598.208,4	
Daphnia galeata 0.5-0.7 mm	5127	j	625,2	304,8	5.528.215,3	
Daphnia galeata 0.7-1.0 mm	5127	j	828,4	390,8	10.698.360,2	•
Daphnia galeata 1.0-1.3 mm	5127	j	1.250,0	656,5	45.760.351,3	Daphnia
Daphnia galeata 1.3-1,6 mm	5127	j	1.445,8	703,4	66.939.215,6	
Daphnia galeata 1.6-1,9 mm	5127	i	1.766,2	984,7	149.268.728,2	
Daphnia galeata Männchen	5127	j	1.008,2	515,8	23.800.246,9	Daphnia
Daphnia hyalina Ei < 0.25 mm	5128	D	211,0	159,6	2.814.147,5	Daphnia
Daphnia hyalina Ei > 0.25 mm	5128	D	341,2	207,4	7.878.127,1	Daphnia
Daphnia hyalina 1.3-1.6 mm	5128	j	1.406,3	781,3	66.845.197,1	Daphnia
Daphnia hyalina 1.6-1.9 mm	5128	j	1.672,4	851,9	112.594.358,3	Daphnia
Daphnia hyalina < 0.7 mm	5128	j	664,3	296,9	5.803.747,3	Daphnia
Daphnia hyalina 0.7-1.0 mm	5128	j	878,3	375,1	13.089.240,1	
Daphnia hyalina 1.0-1.3 mm	5128	i	1.109,7	468,8	26.135.548,8	,
Daphnia hyalina Männchen	5128	i	1.016,0	406,4	19.071.851,9	·
Daphnia longispina Ei < 0.25 mm	5129	D	218,6	171,9	3.381.900,3	
Daphnia longispina Ei > 0.25 mm	5129	D	265,7	125,0	2.173.753,0	Daphnia
Daphnia longispina 0.5 mm-0.7 mm	5129	j	640,8	297,0	5.462.335,1	Daphnia
Daphnia longispina 0.7 mm-1.0 mm	5129	j	719,0	343,9	7.955.477,2	
Daphnia longispina 1,6-1,9 mm	5129	j	1.805,3	1.023,8	148.293.450,7	Daphnia
Daphnia longispina 1.0 mm-1.3 mm	5129	j	1.156,7	554,9	33.359.807,2	
Daphnia longispina 1.3 mm-1.6 mm	5129	i	1.375,5	781,3	68.136.870,9	Daphnia
Daphnia longispina Männchen	5129	i	1.016,0	515,8	21.894.201,0	Daphnia
Bosmina coregoni Ei	5099	D	193,5	110,3	1.232.624,0	•
Bosmina coregoni < 0.5 mm	5099	a	359,5	234,5	4.856.280,7	Bosminidae
Bosmina coregoni > 0.5 mm	5099	a	562,7	468,9	25.782.538,4	Bosminidae
Bosmina longicornis kessleri Ei	5315	D	142,8	94,2	665.649,6	
Bosmina longicornis kessleri < 0.5 mm	5315	a	343,9	234,5	4.706.026,8	Bosminidae
Bosmina longicornis kessleri > 0.5 mm	5315	a	570,5	453,2	23.370.523,7	Bosminidae
Bosmina longirostris Ei	5100	D	133,1	58,2	23.370.523,7	
Bosmina longirostris < 0.35 mm	5100	a	262,1	193,5	2.113.499,8	
Bosmina longirostris > 0.35 mm	5100		356,4	237,6	4.828.821,1	Bosminidae
Acroperus harpae < 0.5 mm	5089	a i	436,0	276,1	5.584.398,1	Chydoridae
Alona affinis < 0.6 mm	5936	i	545,2	227,2	7.268.144,6	
Alonella nana > 0.2 mm	5092	g	245,0	169,5	1.915.027,5	Chydoridae

Artname	DV_NR	F	Lang	Breit	Volumen	taxonomischeGruppe
Chydorus sphaericus Ei	5116	D	155,8	90,9	674.052,7	Chydoridae
Chydorus sphaericus < 0.3 mm	5116	m	236,0	197,0	3.529.936,1	Chydoridae
Chydorus sphaericus > 0.3 mm	5116	m	343,3	273,1	10.260.782,5	Chydoridae
Camthocamptus staphilinus Ei	5015	D	63,0	63,0	130.924,3	Harpacticoidae
Canthocamptus staphylinus Copepodid < 0.4 mm	5015	0	859,7	203,2	4.793.114,3	Harpacticoidae
Calanoida-Copepodid 0.35-0.6 mm	5638	1	523,7	171,9	3.427.367,5	Calanoidae
Calanoida-Copepodid 0.6-0.9 mm	5638	1	703,4	172,0	4.900.451,9	Calanoidae
Calanoida-Copepodid 0.9-1.2 mm	5638	1	1.054,9	296,9	22.200.435,9	Calanoidae
Eudiaptomus gracilis Ei	5144	K	97,4	90,9	483.810,7	Calanoidae
Eudiaptomus gracilis Männchen	5144	1	1.062,8	281,3	19.795.051,9	Calanoidae
Eudiaptomus gracilis Weibchen	5144	1	1.172,3	312,5	27.602.488,6	Calanoidae
Cyclopoida-Copepodid < 0.35 mm	5322	8	292,1	110,3	800.756,5	Cyclopoidae
Cyclopoida-Copepodid > 1.2 mm	5322	8	1.281,7	515,8	76.846.897,3	Cyclopoidae
Cyclopoida-Copepodid 0.35-0.6 mm	5322	8	562,7	195,4	4.798.172,1	Cyclopoidae
Cyclopoida-Copepodid 0.6-0.9 mm	5322	8	844,0	312,5	18.514.662,3	Cyclopoidae
Cyclopoida-Copepodid 0.9-1.2 mm	5322	8	1.023,8	390,8	35.293.217,9	Cyclopoidae
Cyclops abyssorum Ei	5121	K	129,0	129,0	1.124.003,7	Cyclopoidae
Cyclops abyssorum Männchen	5121	8	1.062,8	398,6	38.170.846,0	Cyclopoidae
Cyclops abyssorum Weibchen	5121	8	1.453,6	515,8	80.795.596,4	Cyclopoidae
Eucyclops serrulatus Ei	5142	K	94,2	81,2	386.949,2	Cyclopoidae
Eucyclops serrulatus Männchen	5142	8	734,6	250,1	10.191.925,6	Cyclopoidae
Eucyclops serrulatus Weibchen	5142	8	781,3	312,5	17.354.083,2	Cyclopoidae
Mesocyclops leuckarti Männchen	5175	8	791,4	265,3	13.019.362,3	Cyclopoidae
Mesocyclops leuckarti Weibchen	5175	8	812,6	289,1	15.612.587,0	Cyclopoidae
Thermocyclops oithonoides Ei	15284	K	77,9	71,4	242.062,9	Cyclopoidae
Thermocyclops oithonoides Männchen	15284	8	531,4	187,6	4.066.472,3	Cyclopoidae
Thermocyclops oithonoides Weibchen	15284	8	656,5	234,5	8.227.397,9	Cyclopoidae
Calanoida-Nauplius < 0.15 mm	15285	D	135,9	74,7	391.428,7	Calanoidae
Calanoida-Nauplius > 0.2 mm	15285	D	375,0	140,7	3.887.031,7	Calanoidae
Calanoida-Nauplius 0,15-0,2 mm	15285	D	168,8	77,9	536.188,3	Calanoidae
Cyclopoida-Nauplius < 0.15 mm	15299	D	129,0	90,9	558.105,2	Cyclopoidae
Cyclopoida-Nauplius > 0.2 mm	15299	D	250,1	158,3	3.199.118,1	Cyclopoidae
Cyclopoida-Nauplius 0.15-0.2 mm	15299	D	177,9	90,9	783.253,9	Cyclopoidae

3.4.3 Biomasse und Sukzession der Arten und Gruppen der Rotatorien

Im späten Frühjahr des Jahres 2013 dominierten die herbivoren Rotatorien *Synchaeta pectinata* und *Notholca caudata* sowie *Gastropus stylifer* und *Kellicottia longispina* (Abb. 18 und Abb. 19). Dabei lag die Rotatorienbiomasse bei etwa 35 µg/L. Im Sommer ging die Rotatorienbiomasse bis auf 7 µg/L zurück, wobei nun überwiegend die ebenfalls herbivore Art *Keratella quadrata* aufkam. Erst im Oktober stieg die Rotatorienbiomasse nochmals bis auf 46 µg/L an. Jetzt dominierte neben *Gastropus hyptopus* die relativ große omnivore Art *Asplanchna priodonta*. Danach verschwanden die Rotatorien bis zum Jahresende fast vollständig aus dem Plankton.

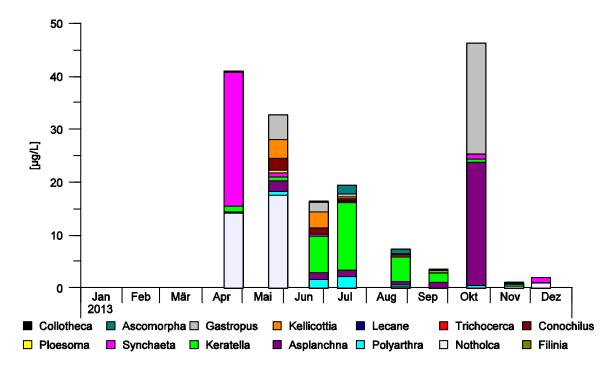


Abb. 18: Zusammensetzung des Rotatorienplanktons (Frischgewicht) im Jahr 2013.

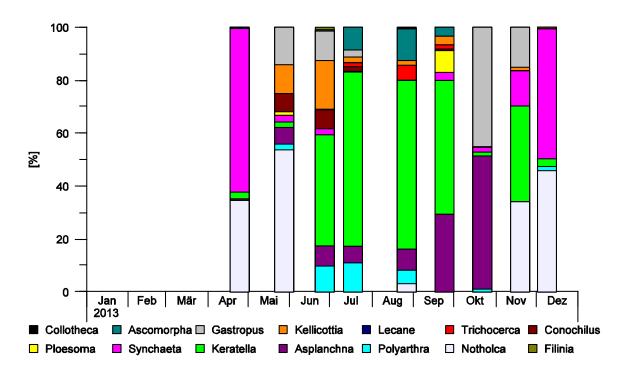


Abb. 19: Relative Zusammensetzung der Rotatorienbiomasse im Jahr 2013.

3.4.4 Biomasse und Sukzession der Arten und Gruppen der Crustaceen

Im April 2013 konnten sich nur wenige Copepoden in der Sengbachtalsperre entwickeln. Die Crustaceenbiomasse lag bei 50 µg/L und setzte sich überwiegend aus adulten Tieren von Cyclops abyssorum (Cyclopoida) und Eudiaptomus gracilis (Calanoida) zusammen (Abb. 20 und Abb. 21), wodurch die Biomasse großer Planktoncrustaceen (> 1 mm Körperlänge) relativ hoch war (Abb. 22). Im Mai stieg die Crustaceenbiomasse leicht an, wobei sich an der Zusammensetzung nur wenig änderte. Neben den Copepoden begannen sich nun auch große herbivore Filtrierer der Gattung Daphnia zu entwickeln, deren Biomasse mit 30 µg/L aber noch gering war. Am folgenden Termin war die Daphnienbiomasse auf 80 µg/L angestiegen. Da überwiegend große Individuen auftraten, errechnet sich ein hoher CSI-Wert (= hohe Biofiltration, vgl. Kap. 3.4.5) und die gleichzeitige Zunahme der Sichttiefe von 5 auf 8 m (Abb. 20) deutet auf das Auftreten eines daphnieninduzierten Klarwasserstadiums hin. Allerdings bestand das Phytoplankton bis dahin hauptsächlich aus den kaum zu konsumierenden Fäden der Blaualge Planktothrix rubescens (vgl. Kap. 3.3.2), so dass sich der Fraßdruck des herbivoren Zooplanktons nur geringfügig auf das Algenwachstum ausgewirkt haben kann. Tatsächlich war die Algenbiomasse in der euphotischen Zone (Summenprobe) weiterhin hoch. Der Anstieg der Sichttiefe lässt sich vermutlich darauf zurückführen, dass die dominanten Algen ihren Entwicklungsschwerpunkt in größere Tiefen (Metalimnion) verlegt haben, wodurch der obere Teil des Wasserkörpers (Epilimnion) lichtdurchlässiger wurde (vgl. Abb. 16, S. 25).

Im Juli ging die Daphnienbiomasse zunächst zurück und die Raubcladocere *Leptodora kindtii* wurde dominant. Im Gegensatz zu planktivoren Fischen (Friedfische) erbeuten diese invertebraten Räuber kleinere Zooplankter und sind möglicherweise der Grund dafür, dass kleine Cladocerenarten in der Sengbachtalsperre kaum vorkommen. Darüber hinaus wurde möglicherweise die Entwicklung der Daphnien unterdrückt, da die Raubcladoceren auch kleine juvenile Stadien fressen. Das Sommerplankton wurde besonders im Juli von großen räuberischen und herbivoren Copepoden (*Cyclops abyssorum, Eudiaptomus gracilis*) dominiert. Die Biomasse bestand dabei hauptsächlich aus adulten Individuen, so dass der Anteil großer Zooplankter auch im Sommer hoch war.

Bis zum Spätsommer entwickelten sich wieder etwas mehr Daphnien und der CSI-Wert war wiederum hoch. Wesentliche Auswirkungen auf die Sichttiefe oder das Algenwachstum waren dabei jedoch nicht zu beobachten, vermutlich weil die Daphnienbiomasse mit insgesamt 90 µg/L eher gering war. Die Biomasse von *Leptodora* ging erst im September zurück, es trat jedoch mit den Larven von *Chaoborus flavicans* gleichzeitig ein weiterer invertebrater Räuber auf. Im September ging ebenfalls die Biomasse größerer Planktoncrustaceen zurück und der kleine cyclopoide Copepode *Thermocyclops oithonoides* wurde dominant. Nur an diesem und an dem folgenden Termin war die Zusammensetzung des Zooplanktons typisch für eine Biozönose wie sie unter einem hohen von Friedfischen ausgehenden Fraßdruck entsteht.

Das Jahresmaximum der Daphnien-Entwicklung trat mit 150 µg/L erst im Oktober auf. Nun kamen jedoch überwiegend kleinere Individuen (< 1 mm Körperlänge) auf, so dass der CSI-Wert niedrig war. Dies lässt sich wahrscheinlich auf einen weiterhin bestehenden hohen Friedfischbestand zurückführen. Eine Auswirkung der relativ hohen Daphnienbiomasse auf das Phytoplankton ließ sich wiederum nicht feststellen. Zu dieser Zeit wurde das Phytoplankton von größeren pennaten Diatomeen dominiert, welche ebenfalls kaum konsumiert werden können (Sichttiefenmessung liegt für diesen Termin nicht vor). Im November ging die Crustaceenbiomasse bereits wieder zurück, wobei Daphnien dominant blieben und auch wieder vermehrt größere Individuen aufkamen. Im Dezember konnten nur noch ganz vereinzelt Crustaceen im Plankton aufgefunden werden.

Abb. 20: Zusammensetzung des Crustaceenplanktons (Frischgewicht) und Entwicklung der Sichttiefen im Jahr 2013.

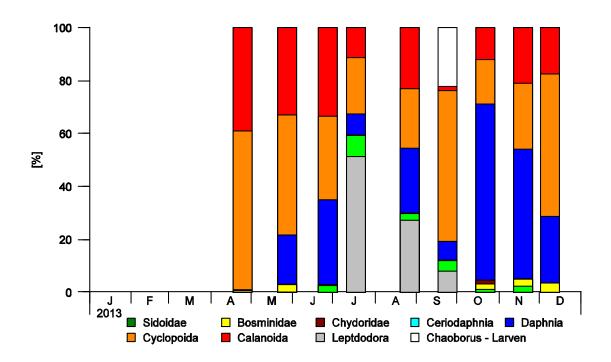


Abb. 21: Relative Zusammensetzung der Crustaceenbiomasse im Jahr 2013

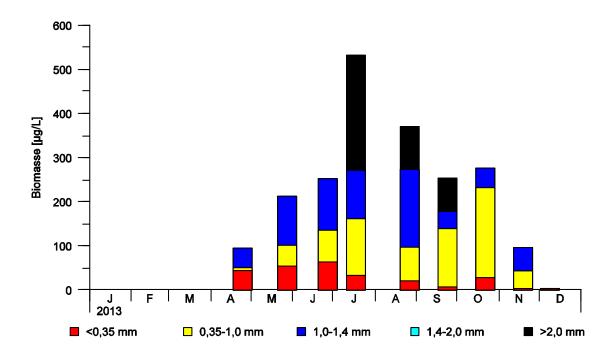


Abb. 22: Größenzusammensetzung des Zooplanktons (Frischgewicht) im Jahr 2013.

3.4.5 Nahrungsangebot für herbivore Filtrierer, Biofiltration und Fischfraßdruck

Das Aufkommen herbivorer Planktonfiltrierer ist in der Sengbachtalsperre vermutlich u. a. durch das meist geringe Aufkommen an geeigneten Nahrungsalgen beschränkt (Abb. 23). Es dominieren daher räuberische Arten wie der cyclopoide Copepode Cyclops abyssorum und die große Raubcladocere Leptodora kindtii. Die langen Fäden von Planktothrix rubescens können nicht nur schlecht aufgenommen werden, sondern verstopfen zudem die Filter der überwiegend unselektiv filtrierenden Daphnien, was zusätzlich die Aufnahme geeigneter Nahrungsalgen behindert. Allerdings war die Biomasse an fressbaren Phytoplanktern im April und Mai sowie im August und September mit 500 µg/L mäßig hoch und es konnte sich als Folge jeweils eine kleinere Daphnienpopulation aufbauen. Während der Sommerstagnation konnten die Daphnien den Planktothrixfäden vermutlich durch Vertikalwanderung ausweichen und in der 2. Jahreshälfte waren die Blaualgen im Wesentlichen aus dem Plankton verschwunden. Eine direkte Auswirkung des Daphniengrazings auf das Blaualgenwachstum wird vermutlich auch bei hohem Daphnienaufkommen nur in begrenztem Umfang möglich sein. OBERHAUS et al. (2007) beschreiben die Aufnahme von Planktothrixfäden durch große Individuen von Daphnia pulicaria, dies jedoch nur bis zu Fadenlängen von 30 µm. Diese kurzen Filamente treten im Wesentlichen nur während der ersten Entwicklungsphase, in der Sengbachtalsperre demnach im zeitigen Frühjahr, auf, wenn die Daphnienentwicklung eigentlich noch nicht eingesetzt hat.

Zudem ist das herbivore Zooplankton in der Sengbachtalsperre einem hohen von invertebraten Räubern ausgehenden Fraßdruck ausgesetzt, der vor allem das Aufkommen kleiner Zooplankter (Rotatorien, kleine Cladocerenarten) unterdrücken kann. Aber auch die juvenilen Stadien größerer Planktoncrustaceen (Nauplien, gerade geschlüpfte Daphnien) können erbeutet werden. Somit wurde das Zooplankton im Sommer, als *Leptodora kindtii* sehr präsent war, überwiegend von großen Copepoden dominiert. Im September und Oktober machte sich ggf. ein hoher von Friedfischen ausgehender Fraßdruck bemerkbar. Denn jetzt wurde das Zooplankton von kleinen Copepoden (*Thermocyclops oithonoides*) und juvenilen Entwicklungsstadien großer Daphnienarten

dominiert. Es spielen in der Sengbachtalsperre demnach sowohl bottom-up- (eher geringes Angebot an geeigneten Nahrungsalgen, meist hoher Anteil an nichtfressbaren Algen) als auch top-down- (zeitweise hoher Fraßdruck invertebrater und vertebrater Räuber) Mechanismen eine prägende Rolle beim Aufkommen des herbivoren Zooplanktons.

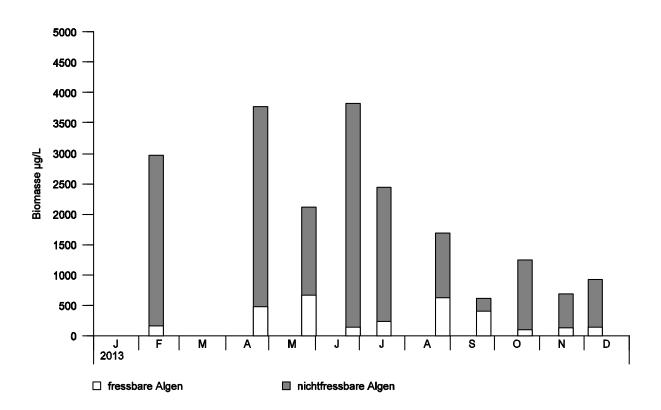


Abb. 23: Biomasse des Phytoplanktons in den Kategorien fressbar (< 40 μ m) und nichtfressbar (u. a. > 40 μ m Länge, fädige Formen oder kompakte Kolonien) für das herbivore Zooplankton im Jahr 2013.

Nach WILLMITZER et al. (2010) und GROßE (2008) lässt sich ein bei der Auswertung der gesamten Crustaceenprobe ermittelte Größenindex (CSI = Cladocera-Size-Index) zur Beurteilung sowohl der der Biofiltration als auch des Fischfraßdrucks heranziehen. Dabei wird im Wesentlichen der prozentuale Anteil großer Cladoceren (> 1 mm) an der gesamten Crustaceenbiomasse festgestellt. Aus den Einzelterminen wird ein arithmetisches Mittel errechnet, wobei der relevante Probezeitraum in die Zeit der Sommerstagnation fällt (i. d. R. von Mai-Oktober). Die empirisch ermittelten Grenzwerte für den CSI sind in Tabelle 8 zusammengestellt. Im Jahr 2013 lag in der Sengbachtalsperre die Konzentration an Gesamtphosphat als Jahres- und Tiefenmittel bei 13 µg/L. Damit fällt die Talsperre in die Kategorie 2. Der Mittelwert des CSI-Wertes liegt mit 0,19 noch knapp im Bereich "mittel" (Tabelle 8). Somit ist davon auszugehen, dass die Biofiltration (in Form des Aufkommens an großen Daphnien) in der Talsperre noch leicht optimiert werden könnte. Dabei ist jedoch zu bedenken, dass die in der ersten Jahreshälfte dominanten Blaualgen von den Filtrieren nur schlecht konsumiert werden können. Außerdem sind die frühen Entwicklungsstadien der Daphnien einem hohen Fraßdruck invertebrater Räuber ausgesetzt, was ebenfalls deren Aufkommen beeinträchtigt. In der zweiten Jahreshälfte, als die invertebraten Räuber weitestgehend aus dem Plankton verschwunden waren, wirkte sich hingegen ein von Friedfischen ausgehender Fraßdruck auf das Aufkommen der Daphnien aus. Dementsprechend wurden im September und sogar im Oktober während des Daphnien-Maximums die niedrigsten CSI-Werte der Saison 2013 gemessen.

Tabelle 8: Gruppenbildung bei Talsperren (TS) (Kriterien: Mixistyp und Gesamtphosphor-Jahresmittel) und Wertebereiche des CSI nach GROßE (2008) zur Einschätzung des Ausmaßes der Biofiltration des Phytoplanktons durch das Zooplankton in den Klassen gering, mittel und groß sowie Rückschluss auf den Fischfraßdruck. Die Sengbachtalsperre liegt in der Kategorie 2.

"Talsperren-Kategorie" (Kat.)	Ausmaß der Biofiltration beurteilt auf Basis des Sommermittelwertes des CSI				
nach Große (2008)	gering	mittel	hoch		
Kat. 1: geschichtete TS mit TP < 10 μg/L	≤ 0,15	0,16 – 0,33	≥ 0,34		
Kat. 2: geschichtete TS mit TP 10- < 18 μg/L	≤ 0,18	0,19 – 0,41	≥ 0,42		
Kat. 3: geschichtete TS mit TP 18- < 34 μg/L	≤ 0,12	0,13 – 0,33	≥ 0,34		
Kat. 4: geschichtete TS mit TP > 34 μg/L	≤ 0,16	0,17 – 0,35	≥ 0,36		
Kat. 5: Flachspeicher (polymiktische TS)	≤ 0,21	0,22 – 0,34	≥ 0,35		
Kat. 6: dystrophe/saure TS		nicht erreichbar	nicht erreichbar		
Einfluss des Fischfraßdrucks auf das Zooplankton	hoch	mittel	gering		

Tabelle 9: Biomasse der Crustaceen (gesamt) und Cladoceren (große Individuen) sowie der CSI-Wert zur Abschätzung der Biofiltration und des Fischfraßdrucks nach GROßE (2008).

Datum	Gesamte Crustaceenbiomasse (ohne <i>Leptodora</i> , ohne Nauplien) [µg/L]	Biomasse großer Cladoceren (> 1 mm) [µg/L]	Anteil großer Cladoceren an der Crustaceenbiomasse CSI
25.04.2013	(52)	(0)	0,00
28.05.2013	175	24	0,14
27.06.2013	195	195 70	
18.07.2013	240	35	0,14
27.08.2013	255	77	0,30
24.09.2013	172	9	0,05
22.10.2013	226	29	0,13
19.11.2013	(93)	(39)	0,42
09.12.2013	(1)	(0)	0,33
CSI-Mittelwert 2013	211	41	0,19

4 Auswertung und Diskussion

4.1 Trophieklassifizierung anhand des Rotatorien- und Crustaceenplanktons nach KARABIN

Anhand der von Karabin (1985) und Karabin et al. (1997) ermittelten Zusammenhänge zwischen der Artenzusammensetzung, der Biomasse der Zooplanktonbiozönose und dem Trophiestatus eines Gewässers lässt sich ein Gewässer trophisch einordnen. Die Bewertung nach Karabin (1985) erfolgt zum einen nach der Artenzusammensetzung – wobei bestimmte Indikatorgruppen unterschieden werden – und zum anderen nach dem Aufkommen bestimmter Zooplanktongruppen (Rotatorien, cyclopoide Copepoden).

Bei den Rotatorien und Crustaceen werden drei ökologische Gruppen unterschieden (Tabelle 10). Die Ökologische Gruppe I wurde von KARABIN häufig in Gewässern mit niedrigem Trophiestatus gefunden; die ökologische Gruppe II dagegen mehr in nährstoffreichen Gewässern. Die Arten der dritten ökologischen Gruppe waren nicht mit einem bestimmten Trophiegrad der untersuchten Gewässer in Beziehung zu bringen.

Tabelle 10: Indikatorgruppen nach Karabin (1985).

Indikatorgruppe I	Indikatorgruppe II	Indikatorgruppe III							
<u> </u>	Rotatoria								
Chromogaster ovalis	Keratella cochlearis f. tecta								
Conochilus unicornis	Keratella quadrata								
Ascomorpha ecaudis	Pompholyx sulcata								
Gastropus stylifer	Filinia longiseta								
Polyarthra major	Anuraeopsis fissa								
	Trichocerca pusilla								
	Brachionus sp.								
	Proales micropus								
	Bdelloidea								
•	Crustacea	•							
Heterocope appendiculata	Mesocyclops leuckartii	Eudiaptomus graciloides							
Bosmina berolinensis	Thermocyclops oithonoides	Eudiaptomus gracilis							
Daphnia longispina hyalina v. galeata	Diaphanosoma brachyurum	Leptodora kindtii							
Daphnia cristata	Chydorus sphaericus	Bosmina crassicornis							
Daphnia cucullata	Bosmina coregoni thersites	Bosmina coregoni							
	Bosmina longirostris	Thermocyclops crassus							
	-	Ceriodaphnia quadrangula							
		Daphnia longispina hyalina f.							
		pellucida							
		Limnocalanus macrurus							
		Acanthocyclops viridis							
		Cyclops kolensis							
		Daphnia pulex							
		Polyphemus pediculus							

Da die Studie von KARABIN auf Daten der Masurischen Seenplatte basiert, ist davon auszugehen, dass das Artenspektrum in anderen Regionen prinzipiell davon abweichen kann. Zudem ist die Artenzusammensetzung der Zooplankter nicht ausschließlich von der Nahrungssituation abhängig (bottom-up Kontrolle), sondern kann ebenso durch den Fraßdruck vertebrater und invertebrater Räuber beeinflusst werden (top-down Kontrolle). Die Bewertungskriterien lassen sich daher in Gewässern, in denen ein hoher Fraßdruck auf die Zooplankter besteht, nur bedingt anwenden (KARABIN 1997). Nach KARABIN (1985) sind die während der Sommerstagnation ermittelten Ergeb-

nisse der Zooplanktonuntersuchung am aussagekräftigsten. KARABIN wählte daher einen Probetermin zwischen dem 15. Juli und 15. August.

Für einen mesotrophen Zustand der Sengbachtalsperre spricht nach KARABIN (1985) die Dominanz von *Keratella quadrata* im Rotatorienplankton sowie ein relativ hoher Anteil cyclopoider Copepoden im Hochsommer (Tabelle 11).

Tabelle 11: Trophieklassifizierung der Sengbachtalsperre für das Jahr 2013 anhand der Sommersituation in der Zooplanktonbiozönose (Crustaceen und Rotatorien) nach Karabin (1985) (verwendeter Termin: 18.07.2013).

Parameter	Messwert Sengbach- talsperre	Trophiegrenzen	Trophiestatus
Anteil von Indikatorgemeinschaft II an der Gesamtrotatorienbiomasse (ohne <i>Asplanchna</i>) [%]	55 < 10 = oligotroph 10-90 = mesotroph > 90 = eutroph		mesotroph
Anzahl der Rotatorien [Ind /I]	128	< 400 = nicht eutroph 400-2000 = eutroph > 2000 = hypertroph	nicht eutroph
Anteil von Indikatorgemeinschaft II an der Crustaceenbiomasse [%]	10	< 25 = oligotroph 25-60 = mesotroph > 60 = eutroph	oligotroph
Anteil der Cyclopoida an der Crustaceenbiomasse [%]	21	<15 = oligotroph 15-30 = mesotroph >30 = eutroph	mesotroph
Biomasse Cyclopoida/ Biomasse Cladocera	0,3	< 0,2 = oligotroph 0,2-0,8 = mesotroph > 0,8 = eutroph	mesotroph

4.2 Trophieklassifizierung mit dem Trophieindex nach LAWA und anhand der Planktonbiomassen

Die Trophieklassifikation mit dem Trophie-Index nach LAWA (TI) (angepasstes Verfahren nach RIEDMÜLLER et al. 2013a und c) erfolgt anhand der Parameter Chlorophyll a (Chl a), Sichttiefe (ST) und Gesamtphosphor (GesP) im Saisonmittel und während der Frühjahrsvollzirkulation. Gemäß des überarbeiteten Verfahrens werden die Saisonmittelwerte von April bis Oktober verwendet (s. Tabelle 12). Des Weiteren kam der auf Indikatorarten basierende PTSI gemäß Verfahrensstand RIEDMÜLLER & HOEHN (2011) sowie der Trophie-Index auf Basis des Phytoplankton-Biovolumens (Saisonmittelwert) nach RIEDMÜLLER et al. (2013c) zur Trophie-Einstufung zum Einsatz (s. Tabelle 12).

Tabelle 12: Trophieklassifikation mit dem Trophie-Index nach LAWA (TI) und allen Teil-Indices sowie mit dem Phytoplanktonbiovolumen-Index (PP-BV-Index) (RIEDMÜLLER et al. 2013c) und dem auf Indikatorarten basierenden Phytoplankton-Taxa-Seen-Index (PTSI) (RIEDMÜLLER & HOEHN 2011) für das Jahr 2013. (Seegruppe: geschichtete Talsperren, geschTS)

Gewässer	Jahr	Saisonmittelwerte und Zirkulationswert (GesPZ)				Trophie-Indices und Gesamt-Trophie-Index (TI)			PP- BV-	PTSI	Anzahl Indik		
Gewassei	Jaili	ChI a [µg/L]	ST [m]	GesP [µg/L]	GesPZ [µg/L]	Chl a	ST	GesP	GesPZ	TI	Index	FISI	Taxa*
Sengbach- talsperre	2013	11,4	5,4	10,1	9,3	2,6	1,3	1,5	1,5	1,83	2,4	1,8	10,1

Gelb unterlegt = stärker von den übrigen Indices abweichendes Ergebnis, Chl a = Chlorophyll a, ST = Sichttiefe, GesP = Gesamtphosphor, Anzahl Indik.-Taxa = Jahresmittelwert der Indikatortaxazahl pro Probe

Als weiteres Werkzeug zur Trophieklassifikation wurde von RIEDMÜLLER & HOEHN (2008) anhand eines Datensatzes aus sächsischen Seen ein Zooplanktonbiovolumen-Index entworfen, welcher ebenfalls in die Skala des Trophie-Index nach LAWA (s. Tabelle 3) transformiert wurde.

Auf Basis des Saisonmittelwertes der Zooplanktonbiomasse (ZP) kann nach der Formel

ZP-Trophie-Index = 0,8007 * In (Saisonmittel Zooplanktonbiovolumen in mg/L) + 2,278 ein Index errechnet werden, dem gemäß Tabelle 3 ein Trophiestatus zugeordnet werden kann.

Die Ergebnisse des ZP-Trophie-Index (s. Tabelle 13) sind, da sie lediglich einen Entwurf für die sächsischen Seen darstellten, nur als orientierende Zusatzinformation zu verstehen. Möglicherweise kann der Index zukünftig an weiteren Datensätzen kalibriert und verbessert werden.

Tabelle 13: Ableitung der Trophieklasse der Jahrgänge auf Basis des Zooplanktonbiovolumens im Saisonmittel mit den (Index-Entwurf nach RIEDMÜLLER & HOEHN 2008).

Gewässer	Jahr	Zooplanktonbiovolumen- Saisonmittelwert [mg/L] (inkl. Räuber)	Zooplankton- Trophie-Index	Trophieklasse
Sengbachtalsperre	2013	0,29	1,2	oligotroph

Fazit zur Trophieklassifikation anhand trophischer Parameter und Planktonbiovolumen

Die verschiedenen Ansätze der Trophieklassifikation in Tabelle 12 zeigen eine auffällige Abweichung der Phytoplankton-Biomasse-Indices (Chl a- und BV-Index) von den übrigen Indices. Während der Artenindex PTSI, die Phosphor-Indices und der Sichttiefen-Index auf einen oligo- bis schwach mesotrophen Trophiestatus hinweisen, bewegen sich die Chl a- und BV-Werte in Richtung der eutrophen Trophieklasse (zur Einstufung beachte Tabelle 3). Bei erhöhter Dominanz von Planktothrix rubescens, welche sich die meiste Zeit der Saison in größeren Tiefen an der Grenze zum Hypolimnion (= Tiefenzone des Sees unterhalb der Sprungschicht) aufhält, ist dies ein typischer Befund. Planktothrix kann hier vom größeren Nährstoffreichtum der Tiefenzone profitieren und trotz des geringen mittleren Phosphorgehalts in der euphotischen Zone unerwartet hohe Biomassen bilden (vgl. Kap. 3.3.2). Die Sichttiefe mit Werten zwischen 3 und 8 m wird von den tiefer liegenden Algendichten (meist tiefer als 10 m, s. Abb. 16) nicht beeinträchtigt und indiziert mit einem Trophieindex von 1,3 sogar den oligotrophen Status.

Ebenso liegt das Zooplanktonbiovolumen (s. Tabelle 13) mit einem Index von 1,2 im oligotrophen Bereich. Wie bereits u. a. im Kap. 3.4 diskutiert, kann das Zooplankton wahrscheinlich nicht von den relativ hohen Biomassen im Phytoplankton profitieren, da der Hauptbiomassebildner *Planktothrix* nur sehr eingeschränkt oder gar nicht fressbar ist.

4.3 Bewertung anhand des Phytoplanktons mit dem Phyto-See-Index

Zur Bewertung kam der Phyto-See-Index (PSI) für Mittelgebirgsseen nach RIEDMÜLLER & HOEHN (2011) zum Einsatz. Hierzu steht die aktuelle PhytoSee-Version 5.1 mit Stand Januar 2014 von MISCHKE *et al.* (2014) zur Verfügung.

Tabelle 14: Bewertung des ökologischen Zustands der Sengbachtalsperre (als Phytoplankton-Seetyp 8) im Jahr 2013 anhand von Phytoplanktonbefunden und Trophiekenngrößen mit dem EG-WRRL-konformen Phyto-See-Index-Verfahren (PSI) (Version 5.1 vom 02.01.2014, MISCHKE *et al.* 2014).

Gewässer	Jahr	BV- Sais	ChI a- Sais	Chl a- Max	GesP- Sais		Bewertunç inzelmetri	<i>d</i>	Anzahl Indika-	Ender- gebnis
		[mm³/L]	[µg/L]	[µg/L]	[µg/L]	BM	AK	PTSI	tortaxa	PSI
Sengbach- talsperre	2013	2,0	11,4	17,7	9,6	2,9	2,3	1,7	10,1	2,29

Abkürzungen: BV = Gesamtbiovolumen, Sais = Mittelwert der Vegetationsperiode März/April bis Oktober/November, Chl a = Chlorophyll a, GesP = Gesamtphosphor, Max = Jahresmaximum, BM = Biomasse, AK = Algenklassen, PTSI = Bewertungsmetric Phytoplankton-Taxa-Seenindex, PSI = PhytoSee-Index, Zuordnung der Zustandsklassen und Farbgebung erfolgt nach Tabelle 4.

Die Bewertung des vorliegenden Talsperren-Jahrgangs mit dem PhytoSee-Index ergibt den "guten" ökologischen Zustand (s. Tabelle 14). Während der Biomassemetric (BM) wegen der erhöhten Algenbiomassen von *Planktothrix* (vgl. Kap. 4.2) bereits im "mäßigen" Zustand liegt, zeigt die taxonomische Zusammensetzung mit den beiden Metrics Algenklassen (AK) und PTSI (Indikatorarten) den "guten" Status an. Insbesondere der i. d. R auf Artniveau agierende PTSI ermittelt mit 1,7 das günstigste Ergebnis, welches mit einer mittleren Anzahl an Indikatortaxa von rund 10 als sehr verlässlich gelten kann.

Das Bewertungsergebnis wird demnach trotz der Abweichungen der Metrics voneinander als plausibel angesehen.

4.4 Bewertung auf Basis der Hintergrund- und Orientierungswerte gemäß EG-WRRL

Die nationale Umsetzung der EG-Wasserrahmenrichtlinie (EG 2000) hat die Erreichung des "guten Zustands" der Oberflächengewässer und des Grundwassers zum Ziel. Zum Schutz der Oberflächengewässer wurde 2011 die Oberflächengewässerverordnung ausgegeben (OGewV 2011), nach der sowohl der chemische Zustand (§ 6) als auch der ökologische Zustand bzw. das ökologische Potenzial (§ 5) zu bewerten sind. Für die Beschreibung des ökologischen Zustands sind die Einstufungs-relevanten biologischen und chemischen Qualitätskomponenten (QK) einzusetzen. Dabei können die sog. "unterstützenden QK" wie die "hydromorphologischen QK" und die "allgemeinen physikalisch-chemischen QK" zu Rate gezogen werden. Hinsichtlich der letztgenannten QK wurden im Rahmen der Arbeit des LAWA Expertenkreises Seen von RIEDMÜLLER et al. (2013a und b) Datenbank-basiert Hintergrund- und Orientierungswerte (H&O-Werte) für die Parameter Gesamtphosphor und Sichttiefe im Freiwasser ermittelt.

Die Hintergrundwerte sollen den trophischen Referenzzustand bzw. die sehr gut/gut-Grenze beschreiben, die Orientierungswerte (H&O) den Übergang vom "guten" zum "mäßigen" ökologischen Zustand. Die H&O-Werte wurden seetypspezifisch abgeleitet und enthalten entsprechend der natürlichen Schwankungsbreite von Parametern keine exakten Grenzwerte sondern Übergangsbereiche der ökologischen Zustandsklassen.

Tabelle 15: Übergangsbereiche (Saisonmittelwerte) des "guten" ökologischen Zustands zur "sehr guten" und zur "mäßigen" Zustandsklasse für die Parameter Gesamtphosphor und Secchi-Sichttiefe bezogen auf den Phytoplankton-Seetyp 8 der Sengbachtalsperre. Auszug aus RIEDMÜLLER et al. (2013b).

Phytoplankton-		Gesamtphosphor im ür die Klassengrenzen	Übergangsbereiche Sichttiefe im Saisonmittel (m) für die Klassengrenzen		
Seetyp	sehr gut/gut	gut/mäßig	sehr gut/gut	gut/mäßig	
8	9-14	18-25	5,5-4,5	4,0-3,0	

Tabelle 16: Unterstützende Bewertung der Sengbachtalsperre anhand der Hintergrund- und Orientierungswerte für die trophischen Parameter Gesamtphosphor und Sichttiefe (Secchi) (RIEDMÜLLER *et al.* 2013b) auf Basis des Jahrgangs 2013. GesP = Gesamtphosphor.

Gewässer	Jahr	GesP Saisonmittel [µg/L]	Ökologische Zustandsklasse gemäß GesP	Sichttiefe Saisonmittel [m]	Ökologische Zustandsklasse gemäß Sichttiefe
Sengbachtalsperre	2013	10,1	im Übergangsbereich sehr gut/gut	5,4	im Übergangsbereich sehr gut/gut

Auf Basis der unterstützenden Bewertung mit den Hintergrund- und Orientierungswerten bzw. mit den allgemeinen chemisch-physikalischen Parametern Gesamtphosphor und Secchi-Sichttiefe für den Phytoplankton-Seetyp 8 liegt die Sengbachtalsperre im Übergangsbereich vom "sehr guten" zum "guten" Zustand. Die im Vergleich zum Phyto-See-Index (s. Kap. 4.3) relativ gute Bewertung bestätigt den im Kap. 4.2 bereist diskutierten Befund, dass die Gesamtphosphorkonzentrationen und die Sichttiefe einen deutlich günstigeren Eindruck über den Trophiestatus geben als die Parameter auf Basis der Phytoplanktonbiomasse.

4.5 Anwendung der PhytoLoss-Indices auf die Zoo- und Phytoplankton-Befunde

4.5.1 Einführung, Methoden und Grundlagen der Auswertung

Die im Jahr 2013 durchgeführten Zooplanktonuntersuchungen wurden für die Anwendung des von DENEKE *et al.* (2013) entwickelten PhytoLoss-Moduls und Excel-Tools (DENEKE 2013) herangezogen.

Beschreibung des Moduls PhytoLoss und dessen Indices:

Die Entwicklung des WRRL-Bewertungsverfahrens mit Phytoplankton (PP) beruht auf Befunden, denen die Effekte des Fraßes durch Zooplankton (ZP) bereits innewohnen. Das Modul PhytoLoss wurde mit dem Ziel entwickelt, vor allem größere Abweichungen in der Phytoplanktonentwicklung und Artenselektion ggf. mit Nahrungsketteneffekten besser erklären zu können. Die folgenden Beschreibungen lehnen sich an die neuste Bearbeitung von DENEKE *et al.* (2013) an.

<u>Die möglichen Effekte der Zooplanktonaktivität auf die Phytoplanktonbewertung können folgendermaßen beschrieben werden:</u>

- zeitweise, z. B. während des Klarwasserstadiums im Frühsommer, oder ganzjährige Dezimierung der Phytoplanktonmenge, insbesondere der fressbaren Fraktion
- Veränderung der relativen Häufigkeiten im Artenspektrum des Phytoplanktons durch Förderung von nicht fressbaren Algentaxa wie fädige Formen oder koloniebildende Arten, was in Einzelfällen aufgrund der veränderten Konkurrenzsituation sogar zu einer Erhöhung des Algenwachstums und im Extremfall zu einer Massenentwicklung führen kann

Auf Basis einer Interaktionsmatrix zwischen Phytoplankton- und Zooplanktongilden (11 Zooplankton- und 12 Phytoplanktongilden) wird anhand von Futterqualitätsfaktoren für jeden Untersuchungstermin die Fressbarkeit des vorhandenen Phytoplanktons für die aktuell vorhandene Zooplanktongesellschaft ermittelt. Die Futterqualitätsfaktoren für die Phytoplanktongilden liegen im Wertebereich von "0" (= nicht-fressbar) bis "1" (= optimal fressbar) und werden in Schritten von 0,2 angegeben.

Der mit den jeweiligen Gildenbiomassen (Zoo- versus Phytoplankton) gebildete und gewichtete Mittelwert der Fressbarkeit wird als Futterqualitätsindex (FQI) bezeichnet, welcher für die "aktuelle" Zusammensetzung des Zooplanktons den relativen Anteil der fressbaren Phytoplankter an der gesamten Phytoplanktonbiomasse beschreibt. Es wird zunächst für jede einzelne Zooplanktongilde (z. B. "große Cladoceren" oder "kleine Cladoceren") ein nur für diese geltender, spezifischer FQI berechnet. Da die Zooplanktongilden sich das Futter entsprechend ihres Biomasseanteils jedoch teilen müssen, werden die spezifischen FQIs noch mit deren relativen Zooplankton-Biovolumenanteilen gewichtet gemittelt. Bei dieser Berechnung wird angenommen, dass in der Zooplanktongesellschaft keine Nahrungsspezialisierung stattfindet und die Nahrung ideal verteilt sowie in ausreichender Dichte vorliegt.

Als eine die momentane Fressbarkeit berücksichtigende Kenngröße wird darüber hinaus der MGI (= Metazooplankton-Grazing-Index auf die fressbare Algenfraktion) berechnet, welcher das Grazing-Potenzial beschreibt. Hierbei werden die Zusammensetzung des Zooplanktons und dessen "Fraß-Möglichkeiten" berücksichtigt. Der MGI wird in Prozent angegeben und beschreibt das Verhältnis zwischen der Zooplanktonbiomasse mit deren speziellen Grazingraten und der von ihm fressbaren Phytoplanktongilden gemäß der aktuellen Zusammensetzung. Der Index kann Werte größer 100% annehmen, da das Zooplankton in Bezug zur fressbaren Phytoplankton-Fraktion überrepräsentiert sein kann bzw. den täglichen Zuwachs mit konsumiert.

Da die Cladoceren sehr effektive Planktonfiltrierer und gleichzeitig leichte Beute für planktivore Fische darstellen, werden zusätzlich sowohl der FQI als auch der MGI beschränkt auf diese Gruppe errechnet FQIC (= Futterqualitätsindex für Cladoceren) und CGI (= Cladoceren-Grazing-Index). Die Form der Berechnung ist dieselbe, nur dass sich die Indices ausschließlich auf die drei Cladoceren-Gilden und deren Biomasseanteile beziehen und der Fraß durch andere Zooplanktongilden vernachlässigt wird. Zur einfacheren Interpretation des MGI und CGI werden den Indexzahlen gemäß Tabelle 17 Grazing-Effektstärke-Klassen von 1-7 zugeordnet.

Tabelle 17: Klassifizierungsschema der Grazing-Indices (MGI und CGI) in Bezug auf das fressbare Phytoplankton mit Hilfe von Grazing-Effektstärke-Klassen (GES) nach Deneke et al. (2013).

Grazing-Indices: MGI und CGI (%/Tag)	Grazing-Effektstärke-Klasse	Grazing-Effektstärke (GES) Ausprägung
< 20%/d	1	gering
20 bis 40%/d	2	schwach
41 bis 80%/d	3	mittel
81 bis 160%/d	4	stark
161 bis 320%/d	5	sehr stark
321 bis 640%/d	6	sehr stark
> 640%/d	7	sehr stark

4.5.2 Ergebnisse der PhytoLoss-Auswertung

Auf der folgenden Seite sind Abbildungen (Abb. 24) und eine Tabelle zusammengestellt, welche die PhytoLoss-Indices und daraus ableitbare bzw. relevante Kenngrößen enthalten und einen Überblick über die Wechselwirkungen zwischen Phyto- und Zooplankton im Jahrgang 2013 ermöglichen sollen.

Zur Information über die Struktur der Zooplankton-Gemeinschaft werden die Biomasse-Anteile der großen effektiven Filtrierer unter den Crustaceen, der Cladoceren, und der Anteil des übrigen herbivoren Zooplanktons (ggf. mit omnivoren Arten) dargestellt.

In der auf die Abbildungen folgende Tabelle 19 sind die Ergebnisse in Kurzform zusammengefasst. Als Grundlage der Beurteilung, ob die Phytoplankton-Biomasse derart vom Zooplankton beeinflusst wird, dass eine bewertungsrelevante Abweichung der Biomasse-Kenngrößen entsteht, wurden in der Tabelle 19 einerseits der Biomasse-Index (BM-Index), als Mittelwert aus Chlorophyll a-Index und Phytoplankton-Biovolumen-Index, und andererseits der (Gesamtphosphor-) GesP-Index als Maß für die Nährstoffsituation mit aufgeführt (aus Tabelle 12). In der Gegenüberstellung des BM- und des GesP-Index können Diskrepanzen deutlich werden, welche ggf. auf die Wechselwirkung mit dem Zooplankton zurückgehen und in der Gesamtschau erklärbar werden.

Der Einfluss des Zooplanktons kann für Vergleiche zwischen Jahren nach DENEKE *et al.* (2013) am besten mit dem Sommermittelwert des MGI beschrieben werden. Es wurde hierzu in der Tabelle 19 der Mittelwert des MGI von (Mai) Juni bis August (Anfang September) angegeben, wobei immer drei Termine zur Mittelwertbildung herangezogen werden.

Des Weiteren wird anhand der Größenstruktur im Zooplankton und der Ergebnisse des CSI (Anteil großer Cladoceren an der Crustaceenbiomasse, s. Kap. 3.4.5) eine Einschätzung über die im Sinne

einer guten Wasserqualität günstigen Struktur des Zooplanktons und des planktivoren Fischbestands mitgeführt ("Einschätzung zum Nahrungsnetz"), der sich über die Kaskade der Nahrungskette ebenfalls auf die Phytoplanktonbewertung auswirken kann.

Tabelle 18: Kenngrößen des PhytoLoss-Moduls für die Probenahmetermine des Jahres 2013 in der Sengbachtalsperre nach einem vorläufigen Excel-Tool von Deneke (2013). Datenbasis Zoo- und Phytoplanktonbefunde je Probe.

Jahr	Datum im Jahr	PP-BV [mm³/L]	PP- fressbar [mm³/L]	PP-nicht fressbar [mm³/L]	ZP-BV herbivor [mm³/L]	Clado- ceren- Anteil [%]	FQI [%]	FQIC [%]	MGI [%]	CGI [%]	GES
	25. Apr.	3,76	1,01	2,75	0,09	1	27	34	4,2	0,0	gering
	28. Mai	2,01	0,76	1,25	0,19	19	38	49	4,9	2,7	gering
	27. Jun.	3,82	1,47	2,35	0,26	33	39	39	4,6	4,8	gering
	18. Jul.	2,43	0,86	1,57	0,27	31	35	32	5,7	6,0	gering
2013	27. Aug.	1,56	0,70	0,85	0,26	36	45	52	8,5	9,1	gering
	24. Sep.	0,60	0,24	0,36	0,18	16	40	50	35,6	4,8	schwach
	22. Okt.	1,25	0,21	1,04	0,27	59	17	11	67,1	100,1	stark
	19. Nov.	0,69	0,19	0,49	0,10	53	28	22	18,4	27,8	schwach
	9. Dez.	0,94	0,14	0,80	0,00	12	15	13	1,2	0,2	gering

PP = Phytoplankton, ZP = Zooplankton, BV = Biovolumen in mm³/L (= mg/L). FQI =Futterqualitätsindex, FQIC = Futterqualitätsindex für die Gilden der Cladoceren, MGI = Metazooplankton-Grazing-Index, CGI = Cladoceren-Grazing-Index, GES = Grazing Effektstärke-Klasse (1-7): Maximum aller Grazing-Index-Klassifizierungen, s. stark = sehr stark.

orange unterlegt = auffällig hohe Werte in den Grazing-Indices.

Verwendete Abkürzungen in der Abb. 24 und Tabelle 19:

k. M. = keine Messung, PP = Phytoplankton, ZP = Zooplankton, BV = Biovolumen, FQI = Futter-qualitätsindex, MGI = Metazooplankton-Grazing-Index, GES = Grazing Effektstärke-Klasse (1-7), GesP = Gesamtphosphor, BM = Biomasse.

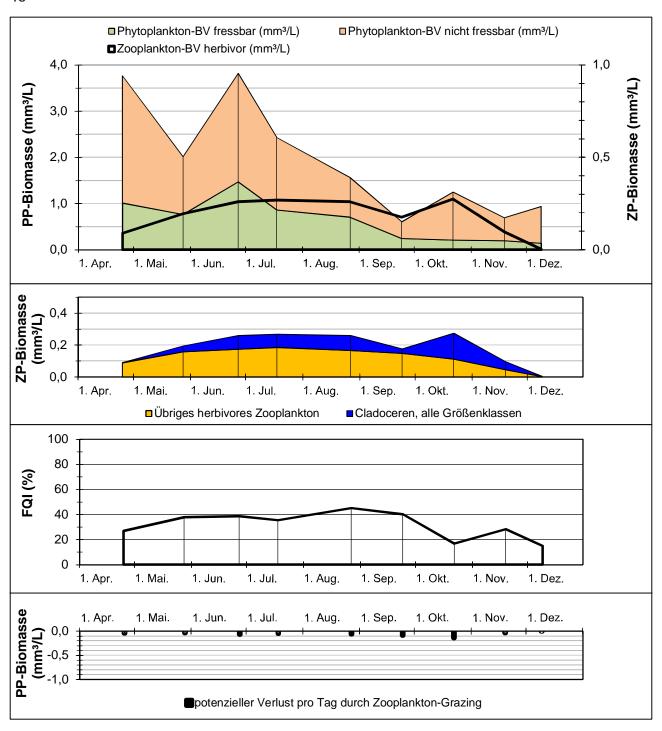


Abb. 24: Biomasse des Phytoplanktons (PP) in Fressbarkeitskategorien (nach FQI) sowie des herbivoren Zooplanktons (ZP), Anteil der Cladoceren (alle Größen), FQI des PP sowie das vom ZP ausgehende tägliche Grazing-Potenzial (nach MGI) an den Terminen im Jahr 2013 in der Sengbachtalsperre.

Tabelle 19: Trophiestatus mit GesP- und BM-Index (Mittel Chl a- und PP-BV-Index), Grazing-Effektstärke (GES) des ZP auf das PP, Vorkommen von Klarwasserstadium und dominanten Taxa sowie Aussagen zur ZP-Struktur und daraus abschätzbarem Fischbestand (Übertrag aus Kap. 3.4.5). 2013.

Jahrgang	BM-Index GesP-Index	Klarwasser- stadium	Einfluss des ZP auf die PP-Biomasse	Dominante Taxa (% Biomasse)	Einschätzung zum Nahrungsnetz
2013	BM-Index 2,5 GesP-Index 1,5	nein	MGI-Sommermittel 6% GES = gering	Jul/Aug: <i>Leptodora</i> <i>kindtii</i> (bis 39%) bis Aug: <i>Planktothrix</i> <i>rubescens</i> (50-95%)	durchschnittliche Zooplanktonstruktur, mittlerer Fraßdruck durch Friedfische vermutet

4.5.3 Fazit aus der Anwendung der PhytoLoss-Indices und Rückschlüsse auf die Phytoplanktonbewertung

Aus der Zusammenstellung in den Abb. 24 und Tabelle 19 werden für den aktuellen Talsperrenjahrgang folgende Aspekte deutlich (vgl. auch Tabelle 17 und Tabelle 18):

- Das Zooplankton-Biovolumen bleibt über das gesamte Jahr mit maximal 0,3 mm³/L sehr gering und indiziert im Saisonmittel einen oligotrophen Nährstoffstatus (s. Tabelle 13).
- Die Fressbarkeit des Phytoplanktons liegt im mittleren bis unteren Bereich. Der diesbezüglich beschreibende Index FQI (für das gesamte herbivore ZP) liegt zwischen 15-45 % Fressbarkeit des an den Probeterminen gefundenen Phytoplanktonbestandes für die zeitgleich ermittelte Zooplanktonzusammensetzung.
- Die potenzielle Biofiltration bleibt mit einem MGI von im Sommermittel 6% sehr gering. Lediglich am Oktobertermin lagen die Grazingindices MGI bzw. CGI mit 67% bzw. 100% deutlich höher und zeigten kurzfristig eine "starke" Grazing-Effektstärke an. Zu diesem Zeitpunkt lag die Futterqualität allerdings bei ihrem Jahresminimum, so dass vermutet werden muss, dass die zu diesem Zeitpunkt relativ häufigen Cladoceren (Jahresmaximum im Oktober) den für sie fressbaren Anteil schon konsumiert haben mussten.

Zusammenfassendes Fazit:

Die geringe herbivore Zooplanktonbiomasse und die schlechte Fressbarkeit der relativ gesehen hohen Phytoplanktonbiomassen bedingen einen eher unterdurchschnittlichen Einfluss durch Grazing. Die Phytoplankton-Bewertung mit dem Phyto-See-Index wird von der Zooplanktongesellschaft vermutlich nicht maßgeblich "gestört", d. h. auch eine Stabilisierung der *Planktothrix*-Population durch erhöhten Fraß der fressbaren "Konkurrenz-Phytoplankter" (also ein "PhytoWin"-Effekt durch Zooplankton) kann wahrscheinlich ausgeschlossen werden.

5 Zusammenfassung und Schlussfolgerungen

Anlässlich einer Massenentwicklung von Blaualgen (Cyanobacterien) in der Sengbachtalsperre zu Beginn des Jahres 2013 wurden intensive limnologische Untersuchungen ausgelöst. Blütenbildend war die Blaualgenart *Planktothrix rubescens*, welche in der Regel leberschädigende Gifte (Microcystine) produziert. Auf Basis von Tiefenprofilen chemisch-physikalischer Wasserparameter und der Blaualge *Planktothrix* sowie Analysen der Phyto- und Zooplanktongesellschaft und trophischer Begleitparameter im gesamten Jahr 2013 soll die Sengbachtalsperre im vorliegenden Gutachten limnologisch beschrieben, hinsichtlich ihrer Nährstoffbelastung bewertet und das ökologische Umfeld des kritischen Planktonvorkommens geklärt werden.

Die Probennahmen und chemischen Analysen wurden von den Stadtwerken Solingen durchgeführt und die Ergebnisse LBH zur Verfügung gestellt. Die Artbestimmung des Phyto- und Zooplanktons, deren Auswertungen sowie die Zusammenstellung und Interpretation der Untersuchungsergebnisse waren von den Stadtwerken in Auftrag gegeben worden.

Sondenparameter, Wasserchemie und Sichttiefe

Der Wasserkörper der Sengbachtalsperre war von Ende April bis Ende September 2013 thermisch geschichtet (Sommerstagnation). Dabei reichte das Epilimnion während der Sommermonate auf eine Tiefe von etwa 5 m. Die sich daran anschließende Sprungschicht (Metalimnion) war relativ stark ausgeprägt und endete erst in einer Tiefe von etwa 15 m. Das Epilimnion erwärmte sich im Sommer bis auf etwa 21° C. Aber auch im Hypolimnion war, bedingt durch die stetige Wasserentnahme und ein damit verbundenes frühzeitiges Auflösen der Schichtungsstabilität, die Wassertemperatur am Ende der Sommerstagnation mit 10-15° C relativ hoch. Verursacht durch ein verstärktes Wachstum der Blaualge Planktothrix rubescens im Bereich des Metalimnions, stieg hier während der Sommerstagnation der pH-Wert bis auf maximal 9,3 an und es trat ein sogenanntes metalimnisches Sauerstoffmaximum auf (maximal 16 mg/L O₂ mit 170% Sättigung). Die Parameter pH-Wert, Sauerstoff und Leitfähigkeit deuten zudem an, dass es zumindest im Juli auch im Hypolimnion zu einer Anreicherung der Cyanobacterien kam, was möglicherweise auf die Rohwasserentnahme am Grund der Talsperre und einer damit verbundenen Verdriftung zurückgeht. Am Ende der Sommerstagnation im September kam es zu einer leichten Sauerstoffzehrung über dem Sediment. Die veränderten Redoxverhältnisse hatten u.a. die Rücklösung von Phosphaten und eine Reduktion von Nitrat zu Ammonium zur Folge. Insgesamt lagen die Konzentrationen an Gesamtphosphat in der Talsperre bei 13 µg/L (tiefen- und zeitintegrierter Mittelwert über alle Tiefen und den gesamten Untersuchungszeitraum), maximal wurden 112 µg/L im September über dem Grund gemessen.

Plankton, Wechselwirkungen sowie Rückschlüsse auf den Fischbestand

Von Februar bis in den August wurde das Phytoplankton in der Sengbachtalsperre von der Cyanobakterie *Planktothrix rubescens* dominiert. Dabei stieg die Phytoplanktonbiomasse in der gesamten euphotischen Zone (Summenprobe) bis auf maximal 3.600 µg/L an. Da sich der Entwicklungsschwerpunkt der Cyanobakterien während der Sommerstagnation auf das Metalimnion konzentrierte, wurden hier zeitweilig Biomassen von bis zu 10.000 µg/L festgestellt. Entsprechend der WHO Richtlinie für Trinkwasser ist bereits oberhalb einer Konzentration von 200 µg/L an Toxinbildnern im Rohwasser die Alarmstufe 1 erreicht. Vorsorglich wurde das Wasserwerk wegen der Gefahr erhöhter Microcystin-Konzentrationen kurzzeitig vom Netz genommen.

Zum Herbst hin verschwanden die Cyanobakterien fast vollständig aus dem Plankton und es entwickelten sich nur noch mäßig hohe Phytoplanktonbiomassen, wobei verschiedene centrale und pennate Kieselalgen dominierten.

Da die fädigen Cyanobakterien vom herbivoren Zooplankton nur schlecht konsumiert werden können, war das Aufkommen an großen herbivoren Filtrieren (Cladoceren der Gattung Daphnia, calanoide Copepoden) eher gering. Auswirkungen auf die Wasserqualität wie z. B. eine Zunahme der Sichttiefe ("Klarwasserstadium") wurden daher nicht beobachtet. Neben einer ungünstigen Nahrungssituation führt ein erhöhtes Aufkommen an invertebraten (Leptodora kindtil) und zum Herbst hin auch an vertebraten (Friedfische) Räubern zu einem geringeren Aufkommen der Zooplankter. Auffällig ist das fast völlige Fehlen kleinwüchsiger Cladocerengattungen (z. B. Bosmina, Ceriodaphnia) während des Sommers als die Dichte an Leptodora hoch war sowie ein deutlicher Rückgang großer Zooplankter (> 1 mm Körperlänge) im September und Oktober, was sich möglicherweise mit einem zu hohen Bestand an Friedfischen erklären lässt. Dementsprechend wurden im Herbst die niedrigsten CSI-Werte (Anteil großer Daphnien an der Crustaceenbiomasse als Maß für die Biofiltration) gemessen. Im Mittel liegt der CSI-Wert noch im Bereich "mittel", was bedeutet, dass die erfolgreiche Durchführung einer Biomanipulation (Veränderung des Fischbestandes durch Entnahme der Friedfische und Förderung von Raubfischen) eventuell zu einer leichten Verbesserung der Wasserqualität führen könnte. Hierbei ist allerdings zu bedenken, dass das hohe Aufkommen an Planktothrix rubescens von den Daphnien nur bedingt unterdrückt werden kann, da sie deren Filamente nur schlecht konsumieren können. In den Sommermonaten wirkt sich eher der Fraßdruck invertebrater Räuber auf das Zooplankton aus und im Herbst, wenn vermehrt Friedfische das Aufkommen großer Zooplankter zu unterdrücken scheinen, ist das Algenwachstum ohnehin gering.

Trophieklassifikation anhand der Zooplanktonzusammensetzung

Nach dem Klassifizierungsverfahren von KARABIN (1985) und KARABIN et al (1997) sprechen das erhöhte Aufkommen an Indikatorarten bei den Rotatorien sowie ein relativ hoher Anteil cyclopoider Copepoden an der Crustaceenbiomasse im Hochsommer für einen mesotrophen Zustand der Talsperre.

Trophieklassifikation anhand des Trophieindex nach LAWA, der Phyto- und Zooplankton-Gesamtbiomassen sowie Phytoplanktonzusammensetzung

Die Trophieklassifikation mit den Indices nach LAWA, anhand des Phytoplanktonbiovolumens sowie auf Basis der Artenzusammensetzung der Phytoplanktongesellschaft zeigt für die Sengbachtalsperre ein differenziertes Bild: Während die Gesamtphosphorparameter in den oberen Wasserschichten (i. d. R. Mittelwert in der euphotischen Zone 0-15 m) im Übergang der oligotrophen zur mesotrophen Trophieklasse liegen, sprechen die Biomasseparameter Chlorophyll a und das Phytoplanktonbiovolumen für den stark mesotrophen bis leicht eutrophen Status. Die Sichttiefenmessungen werden durch die vorwiegend in den tieferen Zonen vorkommenden *Planktothrix*-Dichten nicht beeinflusst, so dass der Sichttiefen-Index den oligotrophen Zustand anzeigt.

Die Höhe der Zooplanktonbiomasse (Mittelwert April bis Oktober) kann ebenso für die Trophieindikation ausgewertet werden. Hier wird die Trophieklasse oligotroph ermittelt. Dies ist ein Hinweis darauf, dass das Zooplankton die relativ hohen Algendichten nicht für einen adäquaten Biomasseaufbau nutzen konnte, da der Hauptbiomassebildner *Planktothrix* nur sehr eingeschränkt oder gar nicht fressbar ist.

Bewertung mit Phytoplankton und dem Phyto-See-Index gemäß EG-WRRL

Die Sengbachtalsperre befindet sich im Jahr 2013 hinsichtlich Biomasse und taxonomischer Zusammensetzung mit einem Phyto-See-Index von 2,3 noch in der "guten" ökologischen Zustandsklasse. Während der Biomassemetric wegen der erhöhten Algenbiomassen von *Planktothrix* im "mäßigen" Zustand liegt, zeigt die taxonomische Zusammensetzung mit den beiden Metrics Algenklassen und PTSI (auf Basis von Indikatorarten) den "guten" Status an. Insbesondere der i. d. R auf Artniveau agierende PTSI ermittelt mit 1,7 das günstigste Ergebnis, welches mit einer mittleren Anzahl an Indikatortaxa von rund 10 als sehr verlässlich gelten kann. Das Bewertungsergebnis wird als plausibel angesehen.

Unterstützende Bewertung mit den Hintergrund- und Orientierungswerten für Seen gemäß EG-WRRL: Die seetypspezifische Bewertung (Phytoplankton-Seetyp 8) mit den Parametern Gesamtphosphor und Secchi-Sichttiefe zeigt an, dass sich Talsperre im Übergangsbereich der ökologischen Zustandsklassen "sehr gut" und "gut" befindet und somit deutlich besser abschneidet als die Bewertung anhand der biologischen Qualitätskomponente Phytoplankton im Phyto-See-Index. Die Eigenheit, dass *Planktothrix rubescens* als Schwachlichtart auch in tieferliegenden Wasserschichten noch Photosynthese betreiben kann, bringt ihr den Vorteil der besseren Nährstoffversorgung. Während in den oberen 15 Metern Gesamtphosphor-Konzentrationen von maximal 15 μg/L und oftmals deutlich darunter herrschen, stehen in der von *Planktothrix* präferierten Tiefe bei 15-20 m mindestens 15 bis rund 20 μg/L, selten sogar bis 30 μg/L Gesamtphosphor zur Verfügung.

Beeinflussung der Phytoplanktonbewertung durch Zooplanktonfraß – das Modul PhytoLoss

Das geringe Aufkommen herbivoren Zooplanktons und die schlechte Fressbarkeit und Futterqualität der relativ gesehen hohen Phytoplanktonbiomassen bedingen einen eher unterdurchschnittlichen Einfluss durch Grazing. Die Phytoplankton-Bewertung mit dem Phyto-See-Index wird von der Zooplanktongesellschaft vermutlich nicht maßgeblich "gestört". Eine Stabilisierung der Planktothrix-Population durch erhöhten Fraß der fressbaren "Konkurrenz-Phytoplankter" in der darüber liegenden Wassersäule (also ein "PhytoWin"-Effekt durch Zooplankton) kann nicht ausgeschlossen werden.

Empfehlungen für eine zukünftige Überwachung und weitere Maßnahmen

Das an der Sengbachtalsperre durchgeführte limnologische Untersuchungsprogramm ist zugeschnitten für die Überwachung von Trinkwassertalsperren (HOEHN et al. 1998, ATT 1999). Es sollte langjährig und regelmäßig durchgeführt werden. Nach NIXDORF et al. (2008) sollten Seen, die bisher noch nicht planktologisch untersucht wurden, für die Bewertung nach EG-WRRL mindestens drei Jahre in Folge in ein Untersuchungsprogramm einbezogen werden um die Varianz in der Trophieausprägung zu erfassen. Für die Frage der kritischen Entwicklung von Cyanobacterien ist als Mindeststandard ein monatliches Monitoring anzusetzen, welches in den kritischen Phasen im Winter und Frühjahr ggf. noch zu verdichten ist.

Für die Zooplanktonprobenahme wird empfohlen, das defekte Flowmeter für das Zooplanktonnetz zu reparieren und regelmäßig auf Funktionsfähigkeit zu überprüfen. Da wegen einer möglichen Verstopfung des Netzes durch Massenvorkommen von *Planktothrix* dessen Durchgängigkeit eingeschränkt sein kann, ist dies für eine verlässliche Beprobung besonders wichtig. Bei Verstopfung und Rückstau kann die Annahme der theoretischen Wassersäule als Primärvolumen der Fragestellung nicht gerecht werden.

Unbearbeitet ist bisher die Frage der fischereilichen Bewirtschaftung. Hierfür wären fischerbiologische Daten bzw. Untersuchungen nötig, wozu dann auch Analysen der Mageninhalte der gefangnen Fische gehören. Damit wäre ein besserer Einblick zu den Einwirkungen der Fische auf das Zooplankton möglich (vgl. WILLMITZER et al 2000).

Da auch invertebrate Räuber (besonders die Raubcladocere *Leptodora kindtii*) einen Einfluss auf die Entwicklung des herbivoren Zooplanktons haben, sollten diese zukünftig quantitativ erfasst werden. Dazu ist ein Netzzug mit einer gröberen Maschenweite (z. B. 350 oder 700 µm) erforderlich, da diese relativ großen Tiere bei Verwendung kleinerer Maschenweiten durch den entstehenden Staudruck reflexartig vor dem Netz ausweichen.

Schlussfolgerungen

Die Nährstoffsituation der Sengbachtalsperre hat sich seit den 1970er Jahren wesentlich verbessert. MIEGEL (1977) fand in den Wintermonaten 1974 (Januar-März) noch 75-100 µg/L Orthophosphat-Phosphor, heute werden nur noch um die 15-20 µg/L Gesamt-Phosphor gemessen. Die mit dem deutlichen Nährstoffrückgang im Freiwasser einhergehende Re-Oligotrophierung fördert in der Regel das Vorkommen von *Planktothrix rubescens* (GAMMETER *et al.* 2002). Die Lichtbedingungen in den oberen Wasserschichten verbessern sich zunehmend, während in den tieferen Wasserschichten u. a. durch Rücklösungsprozesse aus dem Sediment noch höhere Nährstoffkonzentration die trophische Vergangenheit widerspiegeln. Diese Bedingungen begünstigen die Einschichtung von *Planktothrix* im Metalimnion. STEINBERG & HARTMANN (1988) sehen erst unterhalb eines Gesamt-P-Schwellenwertes von 10 µg/L Chancen einer Reduktion der Biomassen von *Planktothrix*.

In der Sengbachtalsperre handelt es sich um die rot-pigmentierte Form von *Planktothrix rubescens*, die typisch für geschichtete Seen ist. Diese besitzt im Gegensatz zu der grün-pigmentierten Form, die eher in flacheren Seen vorkommt, besonders hohe Microcystingehalte (OSTERMEIER *et al.* 2012). Das Augenmerk auf diese Cyanotoxinbildner muss daher weiterhin eine hohe Priorität behalten.

Zur langfristigen Vermeidung oder Verringerung der *Planktothrix*-Vorkommen werden weiter führende Maßnahmen zur Reduktion der Gesamt-Phosphor-Konzentration auf unter 10 µg/L notwendig sein. Um dies mit möglichst effizienten Mitteln zu erreichen, wäre die Quantifizierung der Nährstoffeinträge und –pfade im Rahmen eines Sanierungskonzeptes zu empfehlen.

6 Literatur

- ATT (Arbeitsgemeinschaft Trinkwassertalsperren) (1999): Untersuchungsprogramm zur Wasserbeschaffenheit in Trinkwassertalsperren. Techn. Information Nr. 8, Oldenbourg, 23 S.
- AMOROS, C. (1984): Introduction pratique à la systématique des organismes des eaux continentales françaises, 5.
- CHORUS, I. & BARTRAM, J. (1999): Toxic Cyanobacteria in Water. A guide to their public health consequences, monitoring and management. London, 416 S.
- DE MOTT, W.R. (1995): The influence of prey hardness on *Daphnia*'s selectivity for large prey. *Hydrobiologia* 307: 127-138.
- Deisinger, G. (1984): Leitfaden zur Bestimmung der planktischen Algen der Kärntner Seen und ihrer Biomasse. Kärntner Institut für Seenforschung, Klagenfurt.
- DENEKE, R. (2013): Vorläufiges Excel-Tool zur Berechnung der PhytoLoss-Indices auf Basis von Zoo- und Phytoplanktongilden.
- DENEKE, R., MAIER, G., MISCHKE, U. (2013): Verfahrensvorschrift zur Ermittlung der Grazing-Effektstärke des Zooplanktons als Interpretationshilfe für Phytoplankton-Daten in der Seenbewertung. Im Rahmen des Länderfinanzierungsprogramms "Wasser, Boden und Abfall" 2010. 24 S.
- EG (2000): Richtlinie 2000/60/EG des Europäischen Parlaments und des Rates vom 23. Oktober 2000 zur Schaffung eines Ordnungsrahmens für Maßnahmen der Gemeinschaft im Bereich der Wasserpolitik. Amtsblatt der Europäischen Gemeinschaften L 327/1.
- EINSLE, U. (1993): Copepoda: Calanoida und Cyclopoida. In Brauer, A., Schwoerbel, J. & Zwick, P. (Hrsg.): Süßwasserfauna in Mitteleuropa 8, 1. G. Fischer, Stuttgart, 208 S.
- ETTL, G., GÄRTNER, G., GERLOF, J. HEYNIG, H., MOLLENHAUER, D. (Hrsg.), (1978-2003): Süßwasserflora von Mitteleuropa. Bde. 1, 2/1-2/4, 3, 6, 9, 10, 19/1-19/2 Fischer, Jena, Stuttgart & Elsevier, Heidelberg.
- FLÖBNER, D. (2000): Die Haplopoda und Cladocera (ohne Bosminidae) Mitteleuropas. Leiden, 428 S.
- GAMMETER, S., FORSTER, R. & ZIMMERMANN, U. (2002): Limnologische Untersuchung des Zürichsees 1972-1996. Wasserversorgung Zürich, 58 S.
- GLIWICZ, Z.M. & PIJANOWSKA, J. (1989): The role of competition in zooplankton succession. In Sommer, U. (ed.): *Plankton Ecology*. Springer Verlag, 253-296.
- GROBE, N. (2008): Bewertung von Zooplankton im Hinblick auf dessen Wirkung auf die Biofiltration in Trinkwassertalsperren vorläufiger Endbericht. Arbeitsgemeinschaft Trinkwassertalsperren e.V., 120 S.
- HOEHN, E., KETELAARS, H.A.M., EWIG, B. (Red.) (1998): Erfassung und Bewertung von Planktonorganismen. ATT Technische Informationen Nr. 7, Oldenbourg, 151 S.
- HOFMANN, G. (2005): Einführung in die Systematik und Ökologie von Diatomeen. Material zum ATT-Planktonkurs 19.-21.04.2005, Aggerverband, Wasserwerk Auchel.
- HOFMANN, G., WERUM, M., LANGE-BERTALOT, H. (2011): Diatomeen im Süßwasser-Benthos von Mitteleuropa. Bestimmungsflora Kieselalgen für die ökologische Praxis. Über 700 der häufigsten Arten und ihre Ökologie. A.R.G. Gantner Verlag K.G. Königstein, 908 S.
- Huber-Pestalozzi, G. (Hrsg.) (1938-1983): Das Phytoplankton des Süßwassers. Teil 1-8. Die Binnengewässer, Bd. 16, Schweizerbart, Stuttgart.
- KARABIN, A. (1985): Pelagic zooplankton (Rotatoria + Crustacea) variation in the process of lake
- KARABIN, A., EJSMONT-KARABIN, J., KORNATOWSKA, R. (1997): Eutrophication processes in a shallow, macrophyte-dominated lake factors influencing zooplankton structure and density in Lake Luknajno (Poland). *Hydrobiologia* 342/343: 401-409.
- KASPRZAK, P. & KOSCHEL, R. (2000): Lake trophic state, community structure and biomass of crustacean plankton. *Verh. Internat. Verein. Limnol.* 27: 773-777.

- KLEE, R. & STEINBERG, C. (1987): Kieselalgen bayerischer Gewässer. Informationsberichte des Bayerischen Landesamtes für Wasserwirtschaft 4/87. (Loseblattsammlung)
- Krammer, K. & Lange-Bertalot, H. (1986-1995): Bacillariophyceae: In: *Süsswasserflora von Mitteleuropa*. Bde. 2/1 bis 2/5, G. Fischer, Stuttgart (s. Ettl. *et al.* 1978-2005).
- LAMPERT, W. (1985): The role of zooplankton: an attempt to quantify grazing. In Lakes pollution and recovery.-Rome: *Proc. Int. Congr. Eur. Water Pollution Contr. Assoc.*: 54-62.
- LANGE-BERTALOT, H. (1993): 85 neue Taxa. Bibliotheca Diatomologica 27: 1-454.
- LAWA (Länderarbeitsgemeinschaft Wasser) (1999): Gewässerbewertung Stehende Gewässer. Vorläufige Richtlinie für eine Erstbewertung von natürlich entstandenen Seen nach trophischen Kriterien. Kulturbuchverlag, Berlin. 74 S.
- LAWA (Länderarbeitsgemeinschaft Wasser) (2001): Gewässerbewertung Stehende Gewässer. Vorläufige Richtlinie für die Trophieklassifikation von Talsperren. Kulturbuchverlag, Berlin. 43 S.
- LBH & LIMNOFISCH (2003): Limnologische Untersuchung des Seeparksees (Flückiger See). Ergebnisse 2002. Stadt Freiburg, unveröff., 136 S. +Anhang.
- LEHNHART, B. (1987): Limnologische Untersuchungen am Ammersee 1984-1986. Informationsberichte Bayer. Landesamt für Wasserwirtschaft, München, 2/87: 1-112.
- LOHMANN, H. (1906/1908): Untersuchungen zur Feststellung des vollständigen Gehaltes des Meeres an Plankton. *Wissenschaftliche Meeresuntersuchungen Abt. Kiel* 9: 192-194 und 10: 131-370.
- MIEGEL, H. (1977): Die Sengbachtalsperre bei Solingen Beispiel eines limnologischen Ökosystems. *GWF Wasser/Abwasser* 118: 264-271.
- MISCHKE, U, BÖHMER, J., RIEDMÜLLER, U., HOEHN, E. (2014): Software PhytoSee Version 5.1. Software zur Berechnung des Phyto-See-Index (PSI) für die ökologische Bewertung von natürlichen, künstlichen und erheblich veränderten Seen in Deutschland gemäß EU-Wasserrahmenrichtlinie. Stand 02.01.2014.
- MISCHKE, U. & KUSBER, W.-H. (2009): Harmonisierte Phytoplankton-Taxaliste für die Bewertung von Seen und Flüssen nach EU-WRRL. Download über Dr. Ute Mischke http://www.igb-berlin.de/mitarbeitende-igb (Stand 25.05.2009).
- NIXDORF, B. HOEHN, E., RIEDMÜLLER U. & MISCHKE, U. (2008): Anforderungen an Probenahme und Analyse der Phytoplankton-Biozönosen in Seen zur ökologischen Bewertung gemäß der EU-WRRL. Bad Saarow, Freiburg, Berlin. Univ. Cottbus, Lehrstuhl Gewässerschutz. *Aktuelle Reihe* 2/2008, Gewässerreport Nr. 10: 147-184.
- OBERHAUS, L., GÉLINAS, M., PINEL-ALLOUL, B. & HUMBERT, J.-F. (2007): Grazing of two toxic *Planktothrix* species by *Daphnia pulicaria:* potential of bloom control and transfer of microcystins. *J. Plankton Res.* 29 (10): 827-838.
- PRECHT, M. & KRAFT, R. (1993): Biostatistik. 5. überarb. Auflage. Oldenburg, München & Wien. Bd. 1: 290 S., Bd. 2: 457 S.
- OGEWV (Oberflächengewässerverordnung) (2011): Verordnung zum Schutz der Oberflächengewässer. Bundesgesetzblatt Jahrgang 2011 Teil 1 Nr. 37, ausgegeben zu Bonn am 25. Juli 2011, S. 1429 ff.
- OSTERMEIER, V., SCHANZ, F. KÖSTER, O. & KURMAYER, R. (2012): Stability of toxin gene proportion in redpigmented populations of the cyanobacterium *Planktothrix* during 29 years of re-oligotrophication of Lake Zürich. *BMC Biology* 10: 100.
- RIEDMÜLLER, U. & HOEHN, E. (2011): Praxistest und Verfahrensanpassung: Bewertungsverfahren Phytoplankton in natürlichen Mittelgebirgsseen, Talsperren, Baggerseen und pH-neutralen Tagebauseen zur Umsetzung der EG-Wasserrahmenrichtlinie. Abschlussbericht für das LAWA-Projekt-Nr. O 7.08. Im Rahmen des Länderfinanzierungsprogramms "Wasser, Boden und Abfall" 2008-2010. 120 S.

- RIEDMÜLLER, U., HOEHN, E., MISCHKE, U., DENEKE, R. (2013a): Ökologische Bewertung von natürlichen, künstlichen und erheblich veränderten Seen mit der Biokomponente Phytoplankton nach den Anforderungen der EG-Wasserrahmenrichtlinie. Abschlussbericht für das LAWA-Projekt-Nr. O 4.10. Im Rahmen des Länderfinanzierungsprogramms "Wasser, Boden und Abfall" 2010. 154 S. zzgl. Anhänge.
- RIEDMÜLLER, U., MISCHKE, U., HOEHN, E. (2013b): Bewertung von Seen mit Hilfe allgemeiner physikalischchemischer Parameter. Seetypspezifische Hintergrund- und Orientierungswerte für die Parameter Gesamtphosphor und Sichttiefe. Im Auftrag und unter fachlicher Begleitung der Länderarbeitsgemeinschaft Wasser – Expertenkreis Seen. Stand 6. März 2013. 10 S.
- RIEDMÜLLER, U. & HOEHN, E. (2008): EG-WRRL-konforme Bewertung sächsischer pH-neutraler Baggerseen, Tagebauseen, Fischteiche und Speicher auf Basis der Qualitätskomponente Phytoplankton Ökologischer Zustand und ökologisches Potenzial. Im Auftrag des Sächsischen Landesamts für Umwelt, Landwirtschaft und Geologie. Abschlussbericht 68 S.
- RIEDMÜLLER, U., HOEHN, E., MISCHKE, U. (2013c): Trophieklassifikation von Seen. Trophie-Index nach LAWA Handbuch. Im Rahmen des Länderfinanzierungsprogramms "Wasser, Boden und Abfall" 2008-2010. 32 S.
- ROTT, E. (1981): Sind die Veränderungen im Phytoplanktonbild des Piburger Sees Auswirkungen der Tiefenwasserableitung? *Arch. Hydrobiol. Suppl. (Algological Studies* 34) Band 67: 29-80.
- ROTT, E. (1983): Some results from phytoplankton counting intercalibrations. *Schweiz. Z. Hydrol.* 43: 34-62.
- SANTER, B. (1994): Influences of food type and concentration on the development of *Eudiaptomus gracilis* and implications for interactions between calanoid and cyclopoid copepods. *Arch. Hydrobiol.* 131: 141-159.
- SCHLOTT-IDL, K. (1978): Populationsdynamik pelagischer Protozoen des Piburger Sees. Dissertation Abt. Limnol. Innsbruck 14: 1-82.
- Schwoerbel, J. (1994): Methoden der Hydrobiologie. Süßwasserbiologie. 4. neu bearbeitete Auflage. G. Fischer, Stuttgart. 368 S.
- STEINBERG, C. & HARTMANN, H. (1988): Planktische blütenbildende Cyanobakterien (Blaualgen) und die Eutrophierung von Seen und Flüssen. *Vom Wasser* 70: 1-10.
- UTERMÖHL, H. (1958): Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. *Int. Verein. für theoretische und angewandte Limnologie.* Mitteilung Nr. 9.
- VAN DER WERFF, A. (1955): A new method of concentrating and cleaning diatoms and other organisms. *Proc. Int. Assoc. theor. appl. Limnology* 13: 276-277.
- VOIGT, M. & KOSTE, W. (1978): Rotatoria, Monogonata. 2. Aufl., Borntraeger, Berlin, Stuttgart.
- Wetzel, R.G. (1983): Limnology. Saunders, Philadelphia, 753 S.
- WILLÉN, E. (1976): A simplified method of phytoplankton counting. *British phycol. J.* 11: 265-278.
- WILLMITZER, H., WERNER, M.-G., SCHARF, W. (2000): Fischerei und fischereiliches Management an Trinkwassertalsperren. ATT Technische Informationen Nr. 11, Oldenbourg, 109 S.
- WILLMITZER, H., GROßE, N., MEHLING, A., NIENHÜSER, A., SCHARF, W. & STICH, B. (2010): Bewertung und Bedeutung der Biofiltration des Zooplanktons zur Verbesserung der Wasserqualität in Talsperren. Gwf-Wasser/Abwasser 11/2010: 2-7.